3,580 research outputs found

    Multi-agent evolutionary systems for the generation of complex virtual worlds

    Full text link
    Modern films, games and virtual reality applications are dependent on convincing computer graphics. Highly complex models are a requirement for the successful delivery of many scenes and environments. While workflows such as rendering, compositing and animation have been streamlined to accommodate increasing demands, modelling complex models is still a laborious task. This paper introduces the computational benefits of an Interactive Genetic Algorithm (IGA) to computer graphics modelling while compensating the effects of user fatigue, a common issue with Interactive Evolutionary Computation. An intelligent agent is used in conjunction with an IGA that offers the potential to reduce the effects of user fatigue by learning from the choices made by the human designer and directing the search accordingly. This workflow accelerates the layout and distribution of basic elements to form complex models. It captures the designer's intent through interaction, and encourages playful discovery

    NASA JSC neural network survey results

    Get PDF
    A survey of Artificial Neural Systems in support of NASA's (Johnson Space Center) Automatic Perception for Mission Planning and Flight Control Research Program was conducted. Several of the world's leading researchers contributed papers containing their most recent results on artificial neural systems. These papers were broken into categories and descriptive accounts of the results make up a large part of this report. Also included is material on sources of information on artificial neural systems such as books, technical reports, software tools, etc

    Proceedings of the ECCS 2005 satellite workshop: embracing complexity in design - Paris 17 November 2005

    Get PDF
    Embracing complexity in design is one of the critical issues and challenges of the 21st century. As the realization grows that design activities and artefacts display properties associated with complex adaptive systems, so grows the need to use complexity concepts and methods to understand these properties and inform the design of better artifacts. It is a great challenge because complexity science represents an epistemological and methodological swift that promises a holistic approach in the understanding and operational support of design. But design is also a major contributor in complexity research. Design science is concerned with problems that are fundamental in the sciences in general and complexity sciences in particular. For instance, design has been perceived and studied as a ubiquitous activity inherent in every human activity, as the art of generating hypotheses, as a type of experiment, or as a creative co-evolutionary process. Design science and its established approaches and practices can be a great source for advancement and innovation in complexity science. These proceedings are the result of a workshop organized as part of the activities of a UK government AHRB/EPSRC funded research cluster called Embracing Complexity in Design (www.complexityanddesign.net) and the European Conference in Complex Systems (complexsystems.lri.fr). Embracing complexity in design is one of the critical issues and challenges of the 21st century. As the realization grows that design activities and artefacts display properties associated with complex adaptive systems, so grows the need to use complexity concepts and methods to understand these properties and inform the design of better artifacts. It is a great challenge because complexity science represents an epistemological and methodological swift that promises a holistic approach in the understanding and operational support of design. But design is also a major contributor in complexity research. Design science is concerned with problems that are fundamental in the sciences in general and complexity sciences in particular. For instance, design has been perceived and studied as a ubiquitous activity inherent in every human activity, as the art of generating hypotheses, as a type of experiment, or as a creative co-evolutionary process. Design science and its established approaches and practices can be a great source for advancement and innovation in complexity science. These proceedings are the result of a workshop organized as part of the activities of a UK government AHRB/EPSRC funded research cluster called Embracing Complexity in Design (www.complexityanddesign.net) and the European Conference in Complex Systems (complexsystems.lri.fr)

    Annotated Bibliography: Anticipation

    Get PDF

    Measuring, Monitoring and Managing Legal Complexity

    Get PDF
    The American legal system is often accused of being “too complex.” For example, most Americans believe the Tax Code is too complex. But what does that mean, and how would one prove the Tax Code is too complex? Both the descriptive claim that an element of law is complex and the normative claim that it is too complex should be empirically testable hypotheses. Yet, in fact, very little is known about how to measure legal complexity, much less how to monitor and manage it. Legal scholars have begun to employ the science of complex adaptive systems, also known as complexity science, to probe these kinds of descriptive and normative questions about the legal system. This body of work has focused primarily on developing theories of legal complexity and positing reasons for, and ways of, managing it. Legal scholars thus have skipped the hard part—developing quantitative metrics and methods for measuring and monitoring law’s complexity. But the theory of legal complexity will remain stuck in theory until it moves to the empirical phase of study. Thinking about ways of managing legal complexity is pointless if there is no yardstick for deciding how complex the law should be. In short, the theory of legal complexity cannot be put to work without more robust empirical tools for identifying and tracking complexity in legal systems. This Article explores legal complexity at a depth not previously undertaken in legal scholarship. First, the Article orients the discussion by briefly reviewing complexity science scholarship to develop descriptive, prescriptive, and ethical theories of legal complexity. The Article then shifts to the empirical front, identifying potentially useful metrics and methods for studying legal complexity. It draws from complexity science to develop methods that have been or might be applied to measure different features of legal complexity. Next, the Article proposes methods for monitoring legal complexity over time, in particular by conceptualizing what we call Legal Maps—a multi-layered, active representation of the legal system network at work. Finally, the Article concludes with a preliminary examination of how the measurement and monitoring techniques could inform interventions designed to manage legal complexity by using currently available machine learning and user interface design technologies

    Measuring, Monitoring and Managing Legal Complexity

    Get PDF
    The American legal system is often accused of being “too complex.” For example, most Americans believe the Tax Code is too complex. But what does that mean, and how would one prove the Tax Code is too complex? Both the descriptive claim that an element of law is complex and the normative claim that it is too complex should be empirically testable hypotheses. Yet, in fact, very little is known about how to measure legal complexity, much less how to monitor and manage it. Legal scholars have begun to employ the science of complex adaptive systems, also known as complexity science, to probe these kinds of descriptive and normative questions about the legal system. This body of work has focused primarily on developing theories of legal complexity and positing reasons for, and ways of, managing it. Legal scholars thus have skipped the hard part—developing quantitative metrics and methods for measuring and monitoring law’s complexity. But the theory of legal complexity will remain stuck in theory until it moves to the empirical phase of study. Thinking about ways of managing legal complexity is pointless if there is no yardstick for deciding how complex the law should be. In short, the theory of legal complexity cannot be put to work without more robust empirical tools for identifying and tracking complexity in legal systems. This Article explores legal complexity at a depth not previously undertaken in legal scholarship. First, the Article orients the discussion by briefly reviewing complexity science scholarship to develop descriptive, prescriptive, and ethical theories of legal complexity. The Article then shifts to the empirical front, identifying potentially useful metrics and methods for studying legal complexity. It draws from complexity science to develop methods that have been or might be applied to measure different features of legal complexity. Next, the Article proposes methods for monitoring legal complexity over time, in particular by conceptualizing what we call Legal Maps—a multi-layered, active representation of the legal system network at work. Finally, the Article concludes with a preliminary examination of how the measurement and monitoring techniques could inform interventions designed to manage legal complexity by using currently available machine learning and user interface design technologies
    • 

    corecore