2,946 research outputs found

    A Foundation of Programming a Multi-Tape Quantum Turing machine

    Get PDF
    The notion of quantum Turing machines is a basis of quantum complexity theory. We discuss a general model of multi-tape, multi-head Quantum Turing machines with multi final states that also allow tape heads to stay still.Comment: A twelve page version is to appear in the Proceedings of the 24th International Symposium on Mathematical Foundations of Computer Science in September, 1999. LNC

    Classically-Controlled Quantum Computation

    Get PDF
    Quantum computations usually take place under the control of the classical world. We introduce a Classically-controlled Quantum Turing Machine (CQTM) which is a Turing Machine (TM) with a quantum tape for acting on quantum data, and a classical transition function for a formalized classical control. In CQTM, unitary transformations and measurements are allowed. We show that any classical TM is simulated by a CQTM without loss of efficiency. The gap between classical and quantum computations, already pointed out in the framework of measurement-based quantum computation is confirmed. To appreciate the similarity of programming classical TM and CQTM, examples are given.Comment: 20 page

    Polynomial time quantum computation with advice

    Full text link
    Advice is supplementary information that enhances the computational power of an underlying computation. This paper focuses on advice that is given in the form of a pure quantum state and examines the influence of such advice on the behaviors of an underlying polynomial-time quantum computation with bounded-error probability.Comment: 9 page

    Quantum Optimization Problems

    Full text link
    Krentel [J. Comput. System. Sci., 36, pp.490--509] presented a framework for an NP optimization problem that searches an optimal value among exponentially-many outcomes of polynomial-time computations. This paper expands his framework to a quantum optimization problem using polynomial-time quantum computations and introduces the notion of an ``universal'' quantum optimization problem similar to a classical ``complete'' optimization problem. We exhibit a canonical quantum optimization problem that is universal for the class of polynomial-time quantum optimization problems. We show in a certain relativized world that all quantum optimization problems cannot be approximated closely by quantum polynomial-time computations. We also study the complexity of quantum optimization problems in connection to well-known complexity classes.Comment: date change
    • …
    corecore