26,851 research outputs found

    A foundation for higher-order concurrent constraint programming

    Get PDF
    We present the gamma-calculus, a computational calculus for higher-order concurrent programming. The calculus can elegantly express higher-order functions (both eager and lazy) and concurrent objects with encapsulated state and multiple inheritance. The primitives of the gamma-calculus are logic variables, names, procedural abstraction, and cells. Cells provide a notion of state that is fully compatible with concurrency and constraints. Although it does not have a dedicated communication primitive, the gamma-calculus can elegantly express one-to-many and many-to-one communication. There is an interesting relationship between the gamma-calculus and the pi-calculus: The gamma-calculus is subsumed by a calculus obtained by extending the asynchronous and polyadic pi-calculus with logic variables. The gamma-calculus can be extended with primitives providing for constraint-based problem solving in the style of logic programming. A such extended gamma-calculus has the remarkable property that it combines first-order constraints with higher-order programming

    Logic programming in the context of multiparadigm programming: the Oz experience

    Full text link
    Oz is a multiparadigm language that supports logic programming as one of its major paradigms. A multiparadigm language is designed to support different programming paradigms (logic, functional, constraint, object-oriented, sequential, concurrent, etc.) with equal ease. This article has two goals: to give a tutorial of logic programming in Oz and to show how logic programming fits naturally into the wider context of multiparadigm programming. Our experience shows that there are two classes of problems, which we call algorithmic and search problems, for which logic programming can help formulate practical solutions. Algorithmic problems have known efficient algorithms. Search problems do not have known efficient algorithms but can be solved with search. The Oz support for logic programming targets these two problem classes specifically, using the concepts needed for each. This is in contrast to the Prolog approach, which targets both classes with one set of concepts, which results in less than optimal support for each class. To explain the essential difference between algorithmic and search programs, we define the Oz execution model. This model subsumes both concurrent logic programming (committed-choice-style) and search-based logic programming (Prolog-style). Instead of Horn clause syntax, Oz has a simple, fully compositional, higher-order syntax that accommodates the abilities of the language. We conclude with lessons learned from this work, a brief history of Oz, and many entry points into the Oz literature.Comment: 48 pages, to appear in the journal "Theory and Practice of Logic Programming

    SCOR: Software-defined Constrained Optimal Routing Platform for SDN

    Full text link
    A Software-defined Constrained Optimal Routing (SCOR) platform is introduced as a Northbound interface in SDN architecture. It is based on constraint programming techniques and is implemented in MiniZinc modelling language. Using constraint programming techniques in this Northbound interface has created an efficient tool for implementing complex Quality of Service routing applications in a few lines of code. The code includes only the problem statement and the solution is found by a general solver program. A routing framework is introduced based on SDN's architecture model which uses SCOR as its Northbound interface and an upper layer of applications implemented in SCOR. Performance of a few implemented routing applications are evaluated in different network topologies, network sizes and various number of concurrent flows.Comment: 19 pages, 11 figures, 11 algorithms, 3 table

    Modularizing and Specifying Protocols among Threads

    Full text link
    We identify three problems with current techniques for implementing protocols among threads, which complicate and impair the scalability of multicore software development: implementing synchronization, implementing coordination, and modularizing protocols. To mend these deficiencies, we argue for the use of domain-specific languages (DSL) based on existing models of concurrency. To demonstrate the feasibility of this proposal, we explain how to use the model of concurrency Reo as a high-level protocol DSL, which offers appropriate abstractions and a natural separation of protocols and computations. We describe a Reo-to-Java compiler and illustrate its use through examples.Comment: In Proceedings PLACES 2012, arXiv:1302.579

    Communicating Java Threads

    Get PDF
    The incorporation of multithreading in Java may be considered a significant part of the Java language, because it provides udimentary facilities for concurrent programming. However, we belief that the use of channels is a fundamental concept for concurrent programming. The channel approach as described in this paper is a realization of a systematic design method for concurrent programming in Java based on the CSP paradigm. CSP requires the availability of a Channel class and the addition of composition constructs for sequential, parallel and alternative processes. The Channel class and the constructs have been implemented in Java in compliance with the definitions in CSP. As a result, implementing communication between processes is facilitated, enabling the programmer to avoid deadlock more easily, and freeing the programmer from synchronization and scheduling constructs. The use of the Channel class and the additional constructs is illustrated in a simple application

    Nominal Logic Programming

    Full text link
    Nominal logic is an extension of first-order logic which provides a simple foundation for formalizing and reasoning about abstract syntax modulo consistent renaming of bound names (that is, alpha-equivalence). This article investigates logic programming based on nominal logic. We describe some typical nominal logic programs, and develop the model-theoretic, proof-theoretic, and operational semantics of such programs. Besides being of interest for ensuring the correct behavior of implementations, these results provide a rigorous foundation for techniques for analysis and reasoning about nominal logic programs, as we illustrate via examples.Comment: 46 pages; 19 page appendix; 13 figures. Revised journal submission as of July 23, 200
    corecore