7,819 research outputs found

    Generalizing the Paige-Tarjan Algorithm by Abstract Interpretation

    Full text link
    The Paige and Tarjan algorithm (PT) for computing the coarsest refinement of a state partition which is a bisimulation on some Kripke structure is well known. It is also well known in model checking that bisimulation is equivalent to strong preservation of CTL, or, equivalently, of Hennessy-Milner logic. Drawing on these observations, we analyze the basic steps of the PT algorithm from an abstract interpretation perspective, which allows us to reason on strong preservation in the context of generic inductively defined (temporal) languages and of possibly non-partitioning abstract models specified by abstract interpretation. This leads us to design a generalized Paige-Tarjan algorithm, called GPT, for computing the minimal refinement of an abstract interpretation-based model that strongly preserves some given language. It turns out that PT is a straight instance of GPT on the domain of state partitions for the case of strong preservation of Hennessy-Milner logic. We provide a number of examples showing that GPT is of general use. We first show how a well-known efficient algorithm for computing stuttering equivalence can be viewed as a simple instance of GPT. We then instantiate GPT in order to design a new efficient algorithm for computing simulation equivalence that is competitive with the best available algorithms. Finally, we show how GPT allows to compute new strongly preserving abstract models by providing an efficient algorithm that computes the coarsest refinement of a given partition that strongly preserves the language generated by the reachability operator.Comment: Keywords: Abstract interpretation, abstract model checking, strong preservation, Paige-Tarjan algorithm, refinement algorith

    Generalized Strong Preservation by Abstract Interpretation

    Full text link
    Standard abstract model checking relies on abstract Kripke structures which approximate concrete models by gluing together indistinguishable states, namely by a partition of the concrete state space. Strong preservation for a specification language L encodes the equivalence of concrete and abstract model checking of formulas in L. We show how abstract interpretation can be used to design abstract models that are more general than abstract Kripke structures. Accordingly, strong preservation is generalized to abstract interpretation-based models and precisely related to the concept of completeness in abstract interpretation. The problem of minimally refining an abstract model in order to make it strongly preserving for some language L can be formulated as a minimal domain refinement in abstract interpretation in order to get completeness w.r.t. the logical/temporal operators of L. It turns out that this refined strongly preserving abstract model always exists and can be characterized as a greatest fixed point. As a consequence, some well-known behavioural equivalences, like bisimulation, simulation and stuttering, and their corresponding partition refinement algorithms can be elegantly characterized in abstract interpretation as completeness properties and refinements

    Language-based Abstractions for Dynamical Systems

    Get PDF
    Ordinary differential equations (ODEs) are the primary means to modelling dynamical systems in many natural and engineering sciences. The number of equations required to describe a system with high heterogeneity limits our capability of effectively performing analyses. This has motivated a large body of research, across many disciplines, into abstraction techniques that provide smaller ODE systems while preserving the original dynamics in some appropriate sense. In this paper we give an overview of a recently proposed computer-science perspective to this problem, where ODE reduction is recast to finding an appropriate equivalence relation over ODE variables, akin to classical models of computation based on labelled transition systems.Comment: In Proceedings QAPL 2017, arXiv:1707.0366

    Lazy Abstraction-Based Controller Synthesis

    Full text link
    We present lazy abstraction-based controller synthesis (ABCS) for continuous-time nonlinear dynamical systems against reach-avoid and safety specifications. State-of-the-art multi-layered ABCS pre-computes multiple finite-state abstractions of varying granularity and applies reactive synthesis to the coarsest abstraction whenever feasible, but adaptively considers finer abstractions when necessary. Lazy ABCS improves this technique by constructing abstractions on demand. Our insight is that the abstract transition relation only needs to be locally computed for a small set of frontier states at the precision currently required by the synthesis algorithm. We show that lazy ABCS can significantly outperform previous multi-layered ABCS algorithms: on standard benchmarks, lazy ABCS is more than 4 times faster

    Path-Based Program Repair

    Full text link
    We propose a path-based approach to program repair for imperative programs. Our repair framework takes as input a faulty program, a logic specification that is refuted, and a hint where the fault may be located. An iterative abstraction refinement loop is then used to repair the program: in each iteration, the faulty program part is re-synthesized considering a symbolic counterexample, where the control-flow is kept concrete but the data-flow is symbolic. The appeal of the idea is two-fold: 1) the approach lazily considers candidate repairs and 2) the repairs are directly derived from the logic specification. In contrast to prior work, our approach is complete for programs with finitely many control-flow paths, i.e., the program is repaired if and only if it can be repaired at the specified fault location. Initial results for small programs indicate that the approach is useful for debugging programs in practice.Comment: In Proceedings FESCA 2015, arXiv:1503.0437

    Challenges in Quantitative Abstractions for Collective Adaptive Systems

    Get PDF
    Like with most large-scale systems, the evaluation of quantitative properties of collective adaptive systems is an important issue that crosscuts all its development stages, from design (in the case of engineered systems) to runtime monitoring and control. Unfortunately it is a difficult problem to tackle in general, due to the typically high computational cost involved in the analysis. This calls for the development of appropriate quantitative abstraction techniques that preserve most of the system's dynamical behaviour using a more compact representation. This paper focuses on models based on ordinary differential equations and reviews recent results where abstraction is achieved by aggregation of variables, reflecting on the shortcomings in the state of the art and setting out challenges for future research.Comment: In Proceedings FORECAST 2016, arXiv:1607.0200
    • …
    corecore