29,347 research outputs found

    Knowledge Representation Concepts for Automated SLA Management

    Full text link
    Outsourcing of complex IT infrastructure to IT service providers has increased substantially during the past years. IT service providers must be able to fulfil their service-quality commitments based upon predefined Service Level Agreements (SLAs) with the service customer. They need to manage, execute and maintain thousands of SLAs for different customers and different types of services, which needs new levels of flexibility and automation not available with the current technology. The complexity of contractual logic in SLAs requires new forms of knowledge representation to automatically draw inferences and execute contractual agreements. A logic-based approach provides several advantages including automated rule chaining allowing for compact knowledge representation as well as flexibility to adapt to rapidly changing business requirements. We suggest adequate logical formalisms for representation and enforcement of SLA rules and describe a proof-of-concept implementation. The article describes selected formalisms of the ContractLog KR and their adequacy for automated SLA management and presents results of experiments to demonstrate flexibility and scalability of the approach.Comment: Paschke, A. and Bichler, M.: Knowledge Representation Concepts for Automated SLA Management, Int. Journal of Decision Support Systems (DSS), submitted 19th March 200

    Precise service level agreements

    Get PDF
    SLAng is an XML language for defining service level agreements, the part of a contract between the client and provider of an Internet service that describes the quality attributes that the service is required to possess. We define the semantics of SLAng precisely by modelling the syntax of the language in UML, then embedding the language model in an environmental model that describes the structure and behaviour of services. The presence of SLAng elements imposes behavioural constraints on service elements, and the precise definition of these constraints using OCL constitutes the semantic description of the language. We use the semantics to define a notion of SLA compatibility, and an extension to UML that enables the modelling of service situations as a precursor to analysis, implementation and provisioning activities

    Web Services Support for Dynamic Business Process Outsourcing

    Get PDF
    Outsourcing of business processes is crucial for organizations to be effective, efficient and flexible. To meet fast-changing market conditions, dynamic outsourcing is required, in which business relationships are established and enacted on-the-fly in an adaptive, fine-grained way unrestricted by geographic distance. This requires automated means for both the establishment of outsourcing relationships and for the enactment of services performed in these relationships over electronic channels. Due to wide industry support and the underlying model of loose coupling of services, Web services increasingly become the mechanism of choice to connect organizations across organizational boundaries. This paper analyzes to which extent Web services support the dynamic process outsourcing paradigm. We discuss contract -based dynamic business process outsourcing to define requirements and then introduce the Web services framework. Based on this, we investigate the match between the two. We observe that the Web services framework requires further support for cross - organizational business processes and mechanisms for contracting, QoS management and process-based transaction support and suggest ways to fill those gaps

    Specification and Verification of Context-dependent Services

    Full text link
    Current approaches for the discovery, specification, and provision of services ignore the relationship between the service contract and the conditions in which the service can guarantee its contract. Moreover, they do not use formal methods for specifying services, contracts, and compositions. Without a formal basis it is not possible to justify through formal verification the correctness conditions for service compositions and the satisfaction of contractual obligations in service provisions. We remedy this situation in this paper. We present a formal definition of services with context-dependent contracts. We define a composition theory of services with context-dependent contracts taking into consideration functional, nonfunctional, legal and contextual information. Finally, we present a formal verification approach that transforms the formal specification of service composition into extended timed automata that can be verified using the model checking tool UPPAAL.Comment: In Proceedings WWV 2011, arXiv:1108.208

    Generating a contract checker for an SLA language

    Get PDF
    SLAng is a language for expressing Service LevelAgreements (SLAs) under development as part of the Europeanproject TAPAS. It is defined using a meta-model, an instance ofthe Meta-Object Facility (MOF) model, in which the relationshipbetween the syntax of the language and its domain of applicationis explicitly represented, and the violation semantics ofthe language defined using Object Constraint Language (OCL)constraints. The concrete syntax of the language is the XMLMeta-data Interchange (XMI) mapping of the syntactic part ofthe meta-model. In this paper we describe how the Java MetadataInterface (JMI) mapping can be applied to the meta-modelof the language to generate interfaces and classes to create andquery SLAs and relevant service monitoring data in memory;and how an OCL interpreter can be applied to check violationconstraints over this data, resulting in the implementation of acontract checker that is highly likely to respect the semantics ofthe language

    A conceptual architecture for semantic web services development and deployment

    Get PDF
    Several extensions of the Web Services Framework (WSF) have been proposed. The combination with Semantic Web technologies introduces a notion of semantics, which can enhance scalability through automation. Service composition to processes is an equally important issue. Ontology technology – the core of the Semantic Web – can be the central building block of an extension endeavour. We present a conceptual architecture for ontology-based Web service development and deployment. The development of service-based software systems within the WSF is gaining increasing importance. We show how ontologies can integrate models, languages, infrastructure, and activities within this architecture to support reuse and composition of semantic Web services

    Service discovery and negotiation with COWS

    Get PDF
    To provide formal foundations to current (web) services technologies, we put forward using COWS, a process calculus for specifying, combining and analysing services, as a uniform formalism for modelling all the relevant phases of the life cycle of service-oriented applications, such as publication, discovery, negotiation, deployment and execution. In this paper, we show that constraints and operations on them can be smoothly incorporated in COWS, and propose a disciplined way to model multisets of constraints and to manipulate them through appropriate interaction protocols. Therefore, we demonstrate that also QoS requirement specifications and SLA achievements, and the phases of dynamic service discovery and negotiation can be comfortably modelled in COWS. We illustrate our approach through a scenario for a service-based web hosting provider
    corecore