4,292 research outputs found

    On Reasoning with RDF Statements about Statements using Singleton Property Triples

    Get PDF
    The Singleton Property (SP) approach has been proposed for representing and querying metadata about RDF triples such as provenance, time, location, and evidence. In this approach, one singleton property is created to uniquely represent a relationship in a particular context, and in general, generates a large property hierarchy in the schema. It has become the subject of important questions from Semantic Web practitioners. Can an existing reasoner recognize the singleton property triples? And how? If the singleton property triples describe a data triple, then how can a reasoner infer this data triple from the singleton property triples? Or would the large property hierarchy affect the reasoners in some way? We address these questions in this paper and present our study about the reasoning aspects of the singleton properties. We propose a simple mechanism to enable existing reasoners to recognize the singleton property triples, as well as to infer the data triples described by the singleton property triples. We evaluate the effect of the singleton property triples in the reasoning processes by comparing the performance on RDF datasets with and without singleton properties. Our evaluation uses as benchmark the LUBM datasets and the LUBM-SP datasets derived from LUBM with temporal information added through singleton properties

    Dynamic Provenance for SPARQL Update

    Get PDF
    While the Semantic Web currently can exhibit provenance information by using the W3C PROV standards, there is a "missing link" in connecting PROV to storing and querying for dynamic changes to RDF graphs using SPARQL. Solving this problem would be required for such clear use-cases as the creation of version control systems for RDF. While some provenance models and annotation techniques for storing and querying provenance data originally developed with databases or workflows in mind transfer readily to RDF and SPARQL, these techniques do not readily adapt to describing changes in dynamic RDF datasets over time. In this paper we explore how to adapt the dynamic copy-paste provenance model of Buneman et al. [2] to RDF datasets that change over time in response to SPARQL updates, how to represent the resulting provenance records themselves as RDF in a manner compatible with W3C PROV, and how the provenance information can be defined by reinterpreting SPARQL updates. The primary contribution of this paper is a semantic framework that enables the semantics of SPARQL Update to be used as the basis for a 'cut-and-paste' provenance model in a principled manner.Comment: Pre-publication version of ISWC 2014 pape

    Managing polyglot systems metadata with hypergraphs

    Get PDF
    A single type of data store can hardly fulfill every end-user requirements in the NoSQL world. Therefore, polyglot systems use different types of NoSQL datastores in combination. However, the heterogeneity of the data storage models makes managing the metadata a complex task in such systems, with only a handful of research carried out to address this. In this paper, we propose a hypergraph-based approach for representing the catalog of metadata in a polyglot system. Taking an existing common programming interface to NoSQL systems, we extend and formalize it as hypergraphs for managing metadata. Then, we define design constraints and query transformation rules for three representative data store types. Furthermore, we propose a simple query rewriting algorithm using the catalog itself for these data store types and provide a prototype implementation. Finally, we show the feasibility of our approach on a use case of an existing polyglot system.Peer ReviewedPostprint (author's final draft

    Broadening the Scope of Nanopublications

    Full text link
    In this paper, we present an approach for extending the existing concept of nanopublications --- tiny entities of scientific results in RDF representation --- to broaden their application range. The proposed extension uses English sentences to represent informal and underspecified scientific claims. These sentences follow a syntactic and semantic scheme that we call AIDA (Atomic, Independent, Declarative, Absolute), which provides a uniform and succinct representation of scientific assertions. Such AIDA nanopublications are compatible with the existing nanopublication concept and enjoy most of its advantages such as information sharing, interlinking of scientific findings, and detailed attribution, while being more flexible and applicable to a much wider range of scientific results. We show that users are able to create AIDA sentences for given scientific results quickly and at high quality, and that it is feasible to automatically extract and interlink AIDA nanopublications from existing unstructured data sources. To demonstrate our approach, a web-based interface is introduced, which also exemplifies the use of nanopublications for non-scientific content, including meta-nanopublications that describe other nanopublications.Comment: To appear in the Proceedings of the 10th Extended Semantic Web Conference (ESWC 2013
    corecore