Managing Polyglot Systems Metadata with
Hypergraphs

Moditha Hewasinghage!, Jovan Varga'!, Alberto Abello!, Esteban Zimanyi?

! Universitat Politécnica de Catalunya, BarcelonaTech, Barcelona, Spain
{moditha, jvarga,aabello}@essi.upc.edu
2 Université Libre de Bruxelles, 1050 Bruxelles, Belgium
ezimanyiQulb.ac.be

Abstract. A single type of data store can hardly fulfill every end-user
requirements in the NoSQL world. Therefore, polyglot systems use differ-
ent types of NoSQL datastores in combination. However, the heterogene-
ity of the data storage models makes managing the metadata a complex
task in such systems, with only a handful of research carried out to ad-
dress this. In this paper, we propose a hypergraph-based approach for
representing the catalog of metadata in a polyglot system. Taking an
existing common programming interface to NoSQL systems, we extend
and formalize it as hypergraphs for managing metadata. Then, we define
design constraints and query transformation rules for three representa-
tive data store types. Furthermore, we propose a simple query rewriting
algorithm using the catalog itself for these data store types and pro-
vide a prototype implementation. Finally, we show the feasibility of our
approach on a use case of an existing polyglot system.

Keywords: Metadata Management, NoSQL, Polystore

1 Introduction

With the dawn of the big data era, the heterogeneity among the data storage
models has expanded drastically, mainly due to the introduction of NoSQL.
There are four primary data store models in NoSQL systems: (i) Key-value
stores, which perform like a typical hashmap, where the data is stored and re-
trieved through a key and an associated value; (ii) Wide-column stores, that
manage the data in a columnar fashion; (iii) Document stores, represent data in
a document like structure, which can become increasingly complex with nested
elements; (iv) Graph stores, are instance based and store the relationships be-
tween those instances. The heterogeneity is not only limited to the data models,
but also various implementations of the same data model can be entirely different
from one to another due to the lack of a standard.

Heterogeneous systems can be useful in different scenarios, because it is
highly unlikely that a single data store can efficiently handle all the require-
ments of the end-user. Therefore, it is common to use different ones to manage
different portions of the data. This allows to control the storage and retrieval

more efficiently for different requirements. Hence, polyglot systems were intro-
duced, similar to traditional Federated Database Systems (FDBMS), but more
complex considering the need to handle semistructured data models. Due to the
heterogeneity at different levels, most of the work on polyglot systems [4, 7] sug-
gests the implementation of wrappers or interfaces for each participating data
store. However, this becomes more complex as the number of participating data
store types grows.

The catalog (see [9]) maintains the meta information of the data store. Having
one for a polyglot system enables end users to have a clear view of the complex
system. Its metadata plays a significant role in understanding the overall picture
of the underlying infrastructure and, as well, helps to improve the design of the
polyglot system and determine the access patterns needed for different query
requirements. It is essential to answer questions such as: What is the structure of
the data being stored? Where is a piece of data stored? Is it duplicated in another
store? What is the best way to retrieve this data? Nevertheless, little research
addresses the managing of metadata in polyglot systems. This is mainly due to
the lack of a design construct that can represent heterogeneous, semistructured
data. In this paper, we address the metadata management in polyglot systems
by extending an already existing NoSQL design method [3,2] and formalizing
the constructs through hypergraphs.

The SOS Model [2] claims to capture the NoSQL modeling structures in data
design for key-value stores, document stores, and wide-column stores utilizing
three main constructs: attributes, structs, and sets. These constructs and their
interactions allow to represent the physical storage of above NoSQL systems.
The fact that the model is simple makes it compelling in representability, but
the lack of formalization leaves space for ambiguity and hinders the automation
of metadata management in such settings. Instead, it is simply used as a common
programming interface for data exchange.

In this paper, we formalize SOS using a hypergraph-based representation,
and extend it to maintain the catalog that manages the metadata of a polyglot
system. RDF is considered to be able to represent any kind of data and is
often used as a data interchange format. Therefore, we make the assumption
that we have exemplars of the data in the polyglot system in RDF. Then, we
build a hypergraph that maps to different data design constructs, representing
the SOS model over the information. We represent the catalog of the polyglot
system using these constructs, and introduce a simple query generation algorithm
to show the usefulness of our approach. Next, we explore different data store
models, identify their design constructs, introduce their design constraints, and
define query generation rules for each of them. Finally, we show the feasibility
of our approach using a use case of an existing polyglot system by representing
its metadata catalog through our constructs.

The simple, yet powerful hypergraph-based approach presented in this paper
is a step towards representing heterogeneous, semistructured data in a formal
manner as well as managing the corresponding metadata of a polyglot system. It
proves to be useful concerning (i) expressiveness: the ability to express different

representations, regardless of their complexity and (ii) semantic relativism: the
ability to accommodate different representations of the same data, as defined
in [18].

This paper is organized as follows: First, in Section 2, we introduce some
background. We present and formalize our data model in Section 3. Afterwards,
we discuss the managing of the metadata through the model in Section 4. Then,
we present an application of the constructs in Section 5. Finally, we introduce the
related works in Section 6, and conclude our work with future work in Section 7.

2 Preliminaries

In this section, we introduce the basic concepts about RDF [14] and SOS Model
[2, 3] that will be used in our approach.

2.1 Resource Description Framework (RDF)

The Resource Description Framework [14] is a Wide Web Consortium (W3C)
specification for representing information on the Web. It is a graph-based data
model that helps to serve information by making statements about available
resources.

RDF represents data as triplets consisting of subject, predicate, and object
(s,p,0). These can be resources that are identified by an Internationalized Re-
source Identifier (IRI), which is a unique Unicode string within the RDF graph.
An object can also be a literal, which is a data value. An example of RDF is
shown in Listing 2.1, written in Turtle notation. The example contains informa-
tion about music albums, artists, and songs and is used throughout the paper
to illustrate our approach.

Oprefix foaf: <http://xmlns.com/foaf/0.1>

@prefix xsd: <http://www.w3.org/2001/XMLSchema#>

@prefix mo: <http://purl.org/ontology/mo/>

@prefix dc: <http://purl.org/dc/elements/1.1/>

Oprefix rdf: <http://www.w3.org/1999/02/22-rdf -syntax-ns#>

<http://dbtune.org/jamendo/artist/dylan> rdf:type mo:MusicArtist;
foaf:name "Bob Dylan""~xsd:string;
foaf :made <http://dbtune.org/jamendo/record/emp>.

<http://dbtune.org/jamendo/record/emp> rdf:type mo:Record;
dc:title "Empire Burlesque"~"~"xsd:string;
foaf :maker <http://dbtune.org/jamendo/artist/dylan> ;
mo:track <http://dbtune.org/jamendo/track/Seeing>, <http://dbtune.org/
jamendo/track/Tight >

<http://dbtune.org/jamendo/track/Tight> rdf:type mo:Track;
dc:title "Tight Connection to My Heart"~~xsd:string

<http://dbtune.org/jamendo/track/Seeing> rdf:type mo:Track;
dc:title "Seeing the Real You at Last"""“xsd:string

Listing 2.1: Example RDF dataset !

2.2 SOS Model

The high flexibility of NoSQL systems gives the freedom to have multiple designs
for the same data. A particular data design built focusing on a specific scenario

! http://dbtune.org

can result in adverse performance when applied in a different context. Most of the
data design for NoSQL is carried out based on concrete guidelines for different
datastores and access patterns. Nevertheless, recent approaches propose generic
design constructs for NoSQL systems. For our approach, we decided to use the
SOS model [2, 3] as a starting point.

The SOS model introduces a basic common model (or a meta-layer) which
is a high-level description of the data models of non-relational systems. This
model helps to handle the vast heterogeneity of the NoSQL datastores and pro-
vides interoperability among them, easing the development process. The primary
objective of the meta-layer is to generalize the data model of heterogeneous
NoSQL systems. Thus, it allows standard development practices on a predefined
set of generic constructs. The meta-layer reconciles the descriptive elements of
key-value stores, document stores, and record stores. The different data models
exposed by NoSQL datastores are effectively managed in the SOS data model
with three major constructs: Attribute, Struct, and Set [3].

A name and an associated value characterize each of these constructs. The
structure of the value depends on the type of construct. An Attribute can contain
a simple value such as an Integer or String. Structs and Sets are complex elements
which can contain multiple Attributes, Structs, Sets or a combination of those.
SOS Model mainly addresses data design on document stores, key-value stores,
and wide-column stores [2]. Each of the datastore instances is represented as
a set of collections. There can be any arbitrary number of Sets depending on
the use case. Simple elements such as key-value pairs or single qualifiers can be
modeled as Attributes and groups of Attributes, or a simple entity such as a
document, can be represented as a Struct. A collection of entities is represented
in a Set, which can be a nested collection in a document store or a column family
in a wide-column store.

3 Formalization

In this section, we introduce and formalize our data model, which is based on
representative exemplars in RDF format of each kind of instances in the under-
lying data stores. This RDF graph contains the classes and user-defined types
of the polyglot system. Previous work has shown that this global schema can be
obtained by extracting the schema of each data store and reconciling them [8,
20].

Building on top of the RDF data model discussed in Section 2.1, we introduce
our design constructs based on the SOS Model. Figure 1 shows the overall class
diagram of our constructs, where thicker lines represent the elements already
available in the SOS (namely Sets, Structs, and Attributes), and the relation-
ship multiplicities defined in SOS are preserved. On top of that, we introduce
additional constructs to aid the formalization process and manage metadata.
From here on, we use letters in blackboard font to represent sets of elements
(e.g, A= {Al, AQAn})

We rely on the concept of hypergraph, which is a graph where an edge (aka
hyperedge) can relate any number of elements (not only two). This can be fur-

ther generalized so that hyperedges can also contain other hyperedges (not only

nodes).

SOS Constructs

{Disjoint,Complete} 2 {Disjoint,Complete}

Relationship HyperEdge

-
*

Attribute Class
Representative

URI L
DataType JURL (f
.

Name

{Disjoint,Complete}

{Disjoint,Complete} J] ’ﬁ» I

N

Member | === [E=========)

L

Fig. 1: Class diagram for the overall catalog

We define the overall polyglot system catalog as composed by the schema
and the essential elements that support a uniquely accessible terminology for
the polyglot system.

Definition 1. A polyglot catalog C = (A, E) is a generalized hypergraph where
A is a set of atoms and E is a set of edges.

Definition 2. The set of all atoms A is composed of two disjoint subsets of class
atoms Ao and attribute atoms A . Formally: A = Ac U Ay

Atoms are the smallest constituent unit of the graph and carry a name.
Moreover, every Ao contains a URI that represents the class semantics, while
every A, carries the datatype and a URI for the user-defined type semantics.

Definition 3. The set of all edges E composed of two disjoints subsets of re-
lationships Egr that denote the connectivity between A, and hyperedges Eg that
denotes connectivity between other constructs of C'. Formally: E=Egr UEgy

Definition 4. A relationship ETY is a binary edge between two atoms A, and
Ay and a URI u that represents the semantics of Er. At least one of the atoms in
the relationship must be an Ac. Formally: EY = (A*, AV, u)|A®, AY € AN(A” €
AoV AY € Ac)

This graph G = (A,Eg) is a representation of the available data, i.e., an
RDF translation of the original representatives of the data contained in the
polyglot system, that we assume to be given. This G immutable as it contains
the knowledge about the data. Figure 2 shows the graph G of the original RDF
example in Listing 2.1.

Name,String Aid, Artist Title, String
has

@ A

O A

- R

Name,String

Rid, Record Tid,Track

Fig. 2: Translated graph built from the RDF

We build our data design on top of G, based on the constructs introduced
in SOS model. Thus, we make use of the Hyperedges in G and give rise to
our hypergraph-based catalog C. An incidenceSet of an Atom or a Hyperedge
contains the immediate set of E that Atom or Hyperedge is part of, respectively.

Definition 5. The transitive closure of an edge E is denoted as ET, where
Ec Et, VYec Et :ecé.incidenceSet = €' € ET

Definition 6. A hyperedge Ey is a subset of atoms A and edges E and it cannot
be transitively contained in itself. Formally : Eg C AUE A Eg.incidenceSet N
El =

H

Definition 7. A struct Egsiruer 15 a hyperedge that contains a set of atoms
A, relationships Er, and/or hyperedges Eg. All atoms within Egt,.uct must be
connected by a set of Er that also belong to E;tmct. Formally : Esgryer C
Ey UAUER|VA* AY € E;’tmct CHERT L ERT, LB e Egtmct
Definition 8. A set Es.: is a hyperedge that contains a set of arbitrary hyper-
edges Ey or/and atoms A. Formally : Eges CEy UA

For the ease of illustration, we have also used two additional constructs in
Figure 1: A group member M € AUE is an element of an Fg.;. In this context,
it is an atom or a hyperedge; A node N € MUEg is an element of an Egypyet,
which is either an M or an Eg.

4 Metadata Management

One crucial aspect of a metadata management system is the ability to represent
different data store models. In our work, we exemplify it on traditional RDBMS,
document stores, and wide-column stores. Figure 3 extends our original diagram
of constructs to support those.

The Ege; are specialized into two types: Data Store Ep and First Level Ep.
Ep represents a data store instance of the polyglot system. Er denotes a col-
lection of instances in the particular data store. All the allowed kinds of data
stores are a subclass of Ep. Moreover, Ep.incidenceSet = ().

Thus, we define three Ep (namely Relational EDREZ, Document Store EBoc,
and Wide-Column Eg"l in Figure 3), which are the participants of our polyglot
system. There can be multiple Er within each Ep adhering to the number of
collections that participate in the polyglot system.

Wide
Column *

>l First Level

Relational
table

Fig. 3: Class diagram for metadata with Hyperedge composition

All the Atoms and Edges of the polyglot system belong to the transitive
closure of one or more of these Ep, AUE = UEB Therefore, we can deduce
that the entire polyglot system catalog C can be represented by the participating
Ep .

The Second Level (Es), is a Struct that represents a kind of object residing
directly in Er. These Eg should align with the type of E'p where it is contained.
It is a tuple for Eg”d, a document stored directly in the collection for ES’? °¢ and

a row for E§°.

Each Ep carries a name which is interpreted depending on the context. In
Ep, it can represent the physical location of the underlying data store. In Ep,
it can be the collection name or table name. Depending on the type of Ep that
represents the data store, we can identify specific constraints and transformation
rules for the queries over the representatives.

The Edges of the catalog can carry much more information than just the
name. For example, an Fg can indicate the multiplicity between Atoms. Like-
wise, an Ey can carry information like the size of a collection, percentage of
null values, maximum, minimum, and average of values. However, in this work,
we focus mainly on the structural metadata. This catalog differs from a rela-
tional catalog in the expressiveness that allows to represent heterogeneous data
models. By modeling the catalog of a polyglot system through a hypergraph, it
is possible to retain the structural heterogeneity thanks to its high expressive-
ness and flexibility. Leveraging this information, it is interesting to see how we
can retrieve the data from the polyglot system. Thus, our goal is to transform
the formulation of a query over G into a query over the underlying data stores.
Inter-data store data reconciliation or merges are out of the scope of this paper.

4.1 Query Representation

We assume that any query over the original RDF dataset or an equivalent query
over the graph G corresponds to a query over the polyglot system. Hence, this
query needs to be transformed into sub-queries that are executed on the relevant
underlying data stores. For this, we introduce Algorithm 1 which builds an ad-
jacency list for all the E'y whose closure contains Atoms of the query, aided by
the incidence sets. Once all those Ef are generated and corresponding Ep iden-
tified, a simple projection query can be composed recursively with Algorithm 2
for each of the Er according to different rules depending on the kind of data
store. Algorithm 2 uses a prefix, a suffix and the path relevant for each of the
constructs of the data stores.

We are only generating projection queries, but selections can be considered
a posteriori by pushing down the predicates over the query path. Also, there
can be cases where the same information is available in multiple data stores. If
this happens, this overlap can be easily identified as the considered Atom will
be contained in more than one EE. Then a join should be performed in the
corresponding mediator.

Algorithm 1 Query over polyglot system algorithm

Input: A Subgraph of G including the query Atoms and Relationships
Output: A set of multi language queries Q corresponding to data store queries

1: Q« 0

2: M <+ newHashmap() < N, Set >

3: Q « newQueue()

4: for each Atom a € G do

5: for each Epy i € a.incidenceSet do // hyperedges containing an Atom
6: Q.enqueue(< i,a >)

7: end for

8: end for

9: while Q # 0 do

10 temp < Q.dequeue

11: current < temp. first

12 M.addToSet(current, temp.second) // adds the second parameter to the set
13: for each Epy j € current.incidenceSet do

14: Q.enqueue(< j, current >)

15: end for

16: end while

17: for each Ep f € M.keys do
18: Q.add(CreateQuery(f,””))
19: end for

20: return Q

Algorithm 2 Create Query algorithm

Input: source En, path of Ep (adjacency list M from Algorithm 1 is also available)
Output: A data store query ¢
1: q + prefizO f(source, path)
. for each child € M.get(source) do
q + q + CreateQuery(child, pathO f(source))
. end for
t g g+ suffixOf(source)
. return ¢q

YU N

4.2 Constraints and Transformation Rules on Data Stores

Considering the constructs and the query generation algorithm mentioned ear-
lier, each of the data store models would have its own rules and constraints on

the data. Therefore, in this section, we analyze the constraints and transforma-
tion rules for 3 of them: relational stores, document stores, and wide-column
stores.

I [ame String [Artist |
| el .1l |

l ame,String T ‘
| CH—rJ Recold | |

| Title,String |

—— - _—— = = \ ________________ J

(a) for RDBMS (b) for Wide-Column Store (c) for Document Store
Fig. 4: Alternative data design representations

Relational Database Management Systems A typical example of the type
of data design in RDBMS is shown in Figure 4a. The constraints and the map-
pings on Epy can be represented in a grammar as follows:

EBEI s Egel *’ E}Ijel S Evgel7 Egel s ACA*

A traditional RDBMS data storage system consists of tables, tuples, and simple
attributes. The data store can have multiple tables, which are represented by
EEel. Within a table, the schema of the tuple E&¢! is fixed. Therefore, there
can only be a single Egez inside a Eﬁel . Finally, the tuple contains at least
one Ac, which is the primary key, or multiple A¢ in case of compound keys.
The Ejy containing an Er that crosses two EZel (only one of both) is the one
corresponding to the relation that has the attribute.

The RDBMS design of Figure 4a represents the following tables:
Artist[A_id, name], Record|R_id,name|, Artist_Record[A_id(FK),R_id(FK)],
Track[T _id,title, R_id(FK)].

The following prefix and suffix are used in Algorithm 2 to generate the cor-
responding queries. Note that deleteComma() is an operation that deletes the
trailing comma of a string.

Symbol prefix suffix path
EE “FROM”+ EF°’ name
EZ°l |[“SELECT” deleteCommal()
A A.name “

Table 1: Symbols for Algorithm 2 in RDBMS
Wide-Column Stores In a wide-column store, the data is stored in vertical
partitions. A key and fixed column families identify each piece of data. Inside
a column family, there can be an arbitrary number of qualifiers which identify
values.

col col * col col col col + col +
ED = EF ’ EF = ES ’ ES = ACEStruct) ESt'ruct = A
The outer most E¢? represents the tables. E$°! contains an E¢!, which rep-

resents the rows. The Ac inside this Eg" becomes the row key. EZ' con-

tains several ESS., ., which represent the column families. The A inside the
Eg! ., represents the different qualifiers. The relationships between Ac can
be represented as reverse lookups. In our example scenario, the hypergraph
in Figure 4b contains one column family per table. This can be mapped into
Artist|A_id, [name,{R_id}]], Record[R_id, [name]], Track[T _id[title, R_id]].

Wide-column stores generally support only simple get and put queries and
require the row key to retrieve the data. We use HBase query structure to demon-
strate the capability of simple query generation. Table 2 depicts the translation

rules for simple queries in wide-column stores used in Algorithm 2.

Symbol prefix suffix path
Eg(’l “scan’ 7 + Eg"l.name +
“«’ {COLUMNS => ["
Eg”l deleteComma() + “|}”
Egt(ﬁuct pa‘th + Egtﬁ“luct'nanle + L
40 +path+A.name+ 341 u_yva

Table 2: Symbols for Algorithm 2 in Wide-Column Stores

Document Stores Document stores have the least constraints when it comes
to the data design. They enable multiple levels of nested documents and col-
lections within. Figure 4c shows a document data store design of our example
scenario. The constraints and mappings in a document store design are as follows:

Doc Doc * Doc Doc + Doc Doc| rDoc *
ED = EF ’ EF = ES ’ ES = AC(A|ESet |EStruct) ’

Doc . Doc —+ Doc Doc Doc —+
ESet EStT'ILCt ’ EStruct ” (A|ESet ‘EStruct)

ERe¢ represents the collections of the document store. EE°¢ inside the ER°°
represents the documents within the collection, which must have an identifier
Ac. Apart from that, Eg"c can have Atoms, or Egeic, which represents nested

collections, or EE°¢ . or a combination of any of them. EL% represents a nested

collection which contains documents EZ2¢ ..

The design in Figure 4c can be mapped into a document store design as
Artist{A_id :,name :, Records : [{R_id :,name :,Tracks : [{T_id :,title :
HH}

We use MongoDB syntax for the queries as it is one of the most popular
document stores at the moment. Table 3 identifies the symbols for the queries.

Symbol prefix suffix path
ERo[%db” 4 B name + = find(|}
ESDOC deleteCommal()
ESDt(:“C;LCt Set path + ESDt(:“C;LCt Set-mame + 7
A(path # @) “" +path + A.name + “": 17 w
A(path = @) A.name + “: 17 T

Table 3: Symbols for Algorithm 2 in Document Stores

Other Data Stores As discussed above, we have managed to model and infer
constraints and transformation rules for RDBMS, wide-column stores, and doc-
ument stores which cover most of the use cases. However, it is also interesting
to see the capability of the approach to represent other data stores. Since our
model is based on graphs, we can simply conclude that it can express graph
data stores. We only need to map the data into G, and define a single set with
all Atoms. The key-value stores do not have sophisticated data structures, and

10

it can be considered as a single column in a column family. Thus, since we are
disregarding the storage of complex structures in the values that are not visible
to the data store itself, we can state that our model covers key-value stores as
well.

5 Use Case

In this section, we showcase our technique applied on an already available poly-
glot system. We base the example on the scenario used for ESTOCADA [5].
This involves a typical transportation data storage for a digital city open data
warehousing. It uses RDBMS, document stores, and key-value stores. Figure 5
shows the graph G corresponding to ESTOCADA use case.

bname,String Bid,Bus rname String Rid,Traintname,String tid,Tram mname,String Mid,Metro

id,Line

sname,String Pos,Int

Sid,Station

Fig. 5: Graph representation of ESTOCADA

The ESTOCADA system is used to store train, tram, and metro information
in a RDBMS, the train and metro route information in a document store, and
bus route together with the buses information in a key-value store (see [5] for
more details). This information can be represented in our polyglot catalog® as
follows (shown as containment sets):

C = (BB, B, BE)

EREZ = {EREZTmm 4 Egell\/lﬂrfo’ E?ilTstn,tv E?il]\/lsta,ﬁ E?ilstation}v
EF Train — {ES Tr(u'n} Es Train = VAC_rid; AA_rname}s

EF Metro = {Es "retro}s Esiluet,ro ={Ac _midsAA_mname};
EFiTstat = {EsiTst,at}7 E?il’l"stat = {AC,TidvAcfsidvAAJwS}»
E?ilMsta,t = {Eé‘{illwstat}’ E?ill\/lstat ={Ac mid,Ac_sid, AA_pos}

Rel _ Rel Rel _ .
EF Station — {Es Station}7 Es Station —{AC szdvAA sname
EDO(‘

oc
- {EF Metros. TTamS}’ EF Metros. Trams — {ES Metros. Trams‘}

Doc Doc
ES Metros. Trams {AC mtid, A L"amC’ESet route)

Doc
ESet route {ESt7uct Sta.tLon} EStruLt Station {AA_snume}a

Kv _ v
Ep —{Ep_smtionaEF Bus EF Station _{ES_Station}7

Kuv _ Kv loc Kv_lau _ Kuv

ES " station = {AA_sname, Egoy= }, Eggy ={44_iname}, Er’pus = {Es "Bush
Kv _ v sty pEv st

Eg5"pus ={Aa_iname; Egey™ }, Egeym ={Aa_sname}

Our goal was to store the metadata of the ESTOCADA polyglot system with
a hypergraph. Thus, we used HyperGraphDB? to save the entire catalog infor-
mation including the Atoms, Relationships, and Hyperedges for the structures.
With this catalog, one can quickly detect where each fragment of the polyglot
system lies by merely referring to Hyperedges and the content within.

? The implementation of the catalog is available in https://git.io/vxyHO
3 http://www.hypergraphdb.org

11

6 Related Work

There are few polyglot systems already available to support heterogeneous NoSQL
systems. In BigDAWG [7] different data models are classified as islands. Each
of the islands has a language to access its data, and the data stores provide a
shim to the respective islands it supports for a given query. Cross-island queries
are also allowed, provided appropriate query planning and workload monitor-
ing. Contrastingly, ESTOCADA [4, 5] enables the end user to pose queries using
the native format of the dataset. In this case, the storage manager fragments
and stores the data in different underlying data stores by analyzing the access
patterns. These fragments may overlap, but the query executor decides the op-
timal storage to be accessed. ODBAPI [19] introduces a unified data model and
a general access API for NoSQL and heterogeneous NoSQL systems. This ap-
proach supports simple CRUD operations over the underlying systems, as long
as they provide an interface adhering to the global schema. SQL++ [16] intro-
duces a unifying query interface for NoSQL systems as an extension of SQL to
support complex constructs such as maps, arrays, and collections. This is used
as the query language for the FORWARD middleware that unifies structured
and non-structured data sources. [21] uses a similar approach to SQL++. Kat-
pathikotakis et al. [13] introduces a monoid comprehension calculus-based ap-
proach which supports different data collections and arbitrary nestings of them.
Monoid calculus allows transformations across data models and optimizable al-
gebra. This enables the translation of queries into nested relational algebra, that
can be executed in different data stores through native queries.

Using different adapters or drivers for heterogeneous data stores is a common
approach used in polyglot systems. The aforementioned systems use the same
principal. Liao et al. [15] uses adapter-based approach for RDBMS and HBase.
The authors introduce a SQL interface to RDBMS and NoSQL system, a DB
converter that transforms the information with table synchronization, and three
mode query approach which provides different policies on how applications access
the data. The Spring framework [12] is one of the most popular softwares used to
access multiple data stores, as it supports different types by using specific drivers
and a common access interface. Apache Gremlin [17] and Tinkerpop?* follow a
similar approach but particularly for graph data stores. The main drawback
in this approach is that each and every implementation needs to adhere to a
common interface, which is difficult due to the vast number of available data
stores.

Standalone data stores have their own metadata catalogs. For example, HBase
uses HCatalog® (for hive) to maintain the metadata. They are strictly limited
to the respective data models involved. In our work, we introduce a catalog to
handle heterogeneous data models. MongoDB, on the contrary, does not main-
tain any metadata but rather handles the documents themselves (without any
schema information). But some work has been carried out in managing schema
externally [22].

4 http://tinkerpop.apache.org
® https://cwiki.apache.org/confluence/display /Hive/HCatalog

12

Several work has been carried out on data design methodologies for NoSQL
systems. NoSQL abstract model (NoAM) [1,6] is designed to support scala-
bility, performance, and consistency using concepts of collections, blocks and
entries. This model organizes the application data in aggregates. It defines the
four main activities: conceptual modeling, aggregate design, aggregate partition-
ing, and implementation. The aggregate storage in the target systems is done
depending on the data access patterns, scalability and consistency needs. Simi-
larly, a general approach for designing a NoSQL system for analytical workloads
has been presented in [10]. It adapts the traditional 3-phase design methodology
of conceptual, logical, and physical design, and integrates the relational and co-
relational models into a single quantitative method. At the conceptual level, the
traditional ER diagram is used and transformed into an undirected graph. Nodes
denote the entities, and the edges represent their relationships, tagged with the
relationship type (specialization, composition, and association). In cases where
an entity can become a part of several different hypernodes, it is replicated in
each of them. The Concept and Object Modeling Notation (COMN) introduced
in [11] covers the full spectrum of not only the data store, but also the soft-
ware design process. COMN is a graphical notation capable of representing the
conceptual, logical, physical and real-world design of an object. This helps to
model the data in NoSQL systems where the traditional Entity-Relationship
(ER) diagrams fail in representing certain situations, such as nesting.

7 Conclusions and Future Work

In this paper, we introduced a hypergraph-based approach for managing the
metadata of a polyglot system. We based our work on an already existing data
exchange model (SOS). First, we formalized the design constructs, and extended
them to support metadata management through a catalog. Next, we defined the
constraints and the rules for simple query generation on heterogeneous data store
models. Finally, we implemented a simple use case to showcase our approach on
an existing polyglot system. We showed the expressiveness of hypergraphs, which
is the essential feature of a canonical model of a federated system [18]. Then,
effectively introduced a metadata management approach for polyglot systems
leveraging this expressiveness.

In addition to the structural metadata, the statistical metadata can be easily
included by extending the information kept in the Hyperedges. Moreover, this
work allows us to identify restrictions and limitations of different underlying
data store models that can aid in data design decisions. Thus, this formalization
of the data design can be extended to make data design decisions on NoSQL
systems as well as optimizing an existing design by transforming the data using
the hypergraph representation.

Acknowledgments

This research has been funded by the European Commission through the Eras-
mus Mundus Joint Doctorate Information Technologies for Business Intelligence
- Doctoral College (IT4BI-DC)

13

References

1.

®

10.

11.
12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Atzeni, P., Bugiotti, F., Cabibbo, L., Torlone, R.: Data modeling in the NoSQL
world. Computer Standards & Interfaces (2016)

Atzeni, P., Bugiotti, F., Rossi, L.: Uniform access to non-relational database sys-
tems: The SOS platform. In: International Conference on Advanced Information
Systems Engineering, CAiSE (2012)

Atzeni, P., Bugiotti, F., Rossi, L.: Uniform access to NoSQL systems. Information
Systems 43 (2014)

. Bugiotti, F., Bursztyn, D., Deutsch, A., Manolescu, I., Zampetakis, S.: Flexible

hybrid stores: Constraint-based rewriting to the rescue. In: IEEE 32nd Int. Conf.
on Data Engineering, ICDE (2016)

Bugiotti, F., Bursztyn, D., Diego, U.C.S., Ileana, I.: Invisible glue : Scalable self-
tuning multi-stores. CIDR (2015)

Bugiotti, F., Cabibbo, L., Atzeni, P., Torlone, R.: Database design for NoSQL
systems. In: Int. Conf. on Conceptual Modeling. ER (2014)

Duggan, J., Zdonik, S., Elmore, A.J., Stonebraker, M., Balazinska, M., Howe, B.,
Kepner, J., Madden, S., Maier, D., Mattson, T.: The BigDAWG polystore system.
ACM SIGMOD Record 44(2) (2015)

Euzenat, J., Shvaiko, P., et al.: Ontology matching, vol. 18. Springer (2007)
Garcia-Molina, H., Ullman, J., Widom, J.: Database systems: the complete book.
Pearson Education India (2008)

Herrero, V., Abello, A., Romero, O.: NoSQL design for analytical workloads: Vari-
ability matters. In: 35th Int. Conf. Conceptual Modeling:, ER (2016)

Hills, T.: NoSQL and SQL Data Modeling. Technics Publications (2016)
Johnson, R., Hoeller, J., Donald, K., Pollack, M., et al.: The spring framework—
reference documentation. Interface 21 (2004)

Karpathiotakis, M., Alagiannis, I., Ailamaki, A.: Fast queries over heterogeneous
data through engine customization. Proc. of the VLDB Endowment 9(12) (2016)
Klyne, G., Carroll, J.J.: Resource Description Framework (RDF): Concepts and
abstract syntax. http://www.w3.org/TR/2004/REC-rdf - concepts-20040210/, ac-
cessed: 2018-02-16

Liao, Y.T., Zhou, J., Lu, C.H., Chen, S.C., Hsu, C.H., Chen, W., Jiang, M.F.,
Chung, Y.C.: Data adapter for querying and transformation between SQL and
NoSQL database. Future Generation Computer Systems 65 (2016)

Ong, K.W., Papakonstantinou, Y., Vernoux, R.: The SQL++ semi-structured data
model and query language: A capabilities survey of sqgl-on-hadoop, NoSQL and
newsql databases. CoRR abs/1405.3631 (2014)

Rodriguez, M.A.: The Gremlin graph traversal machine and language. In: 15th
Symposium on Database Programming Languages. ACM (2015)

Saltor, F., Castellanos, M., Garcia-Solaco, M.: Suitability of data models as canon-
ical models for federated databases. ACM Sigmod Record 20(4) (1991)

Sellami, R., Bhiri, S., Defude, B.: Supporting multi data stores applications in
cloud environments. IEEE Trans. on Services Computing 9(1) (2016)

Shvaiko, P., Euzenat, J.: Ontology matching: state of the art and future challenges.
IEEE Trans. on knowledge and data engineering 25(1) (2013)

Vathy-Fogarassy, A., Hugyak, T.: Uniform data access platform for SQL and
NoSQL database systems. Information Systems 69 (2017)

Wang, L., Hassanzadeh, O., Zhang, S., Shi, J., Jiao, L., Zou, J., Wang, C.: Schema
management for document stores. PVLDB 8(9) (2015)

14

