581 research outputs found

    Tactile on-chip pre-processing with techniques from artificial retinas

    Get PDF
    The interest in tactile sensors is increasing as their use in complex unstructured environments is demanded, like in tele-presence, minimal invasive surgery, robotics etc. The matrix of pressure data these devices provide can be managed with many image processing algorithms to extract the required information. However, as in the case of vision chips or artificial retinas, problems arise when the array size and the computation complexity increase. Having a look to the skin, the information collected by every mechanoreceptor is not carried to the brain for its processing, but some complex pre-processing is performed to fit the limited throughput of the nervous system. This is specially important for high bandwidth demanding tasks. Experimental works report that neural response of skin mechanoreceptors encodes the change in local shape from an offset level rather than the absolute force or pressure distributions. This is also the behavior of the retina, which implements a spatio-temporal averaging. We propose the same strategy in tactile preprocessing, and we show preliminary results when it faces the detection of the slip, which involves fast real-time processing.Ministerio de Ciencia y TecnologĂ­a TIC2003 - 09817-C0

    Tactile sensors for robot handling

    Get PDF
    First and second generation robots have been used cost effectively in high‐volume ‘fixed’ or ‘hard’ automated manufacturing/assembly systems. They are ‘limited‐ability’ devices using simple logic elements or primitive sensory feedback. However, in the unstructured environment of most manufacturing plants it is often necessary to locate, identify, orientate and position randomly presented components. Visual systems have been researched and developed to provide a coarse resolution outline of objects. More detailed and precise definition of parts is usually obtained by high resolution tactile sensing arrays. This paper reviews and discusses the current state of the art in tactile sensing

    Sensors for Robotic Hands: A Survey of State of the Art

    Get PDF
    Recent decades have seen significant progress in the field of artificial hands. Most of the surveys, which try to capture the latest developments in this field, focused on actuation and control systems of these devices. In this paper, our goal is to provide a comprehensive survey of the sensors for artificial hands. In order to present the evolution of the field, we cover five year periods starting at the turn of the millennium. At each period, we present the robot hands with a focus on their sensor systems dividing them into categories, such as prosthetics, research devices, and industrial end-effectors.We also cover the sensors developed for robot hand usage in each era. Finally, the period between 2010 and 2015 introduces the reader to the state of the art and also hints to the future directions in the sensor development for artificial hands

    Microfabricated tactile sensors for biomedical applications: a review

    Get PDF
    During the last decades, tactile sensors based on different sensing principles have been developed due to the growing interest in robotics and, mainly, in medical applications. Several technological solutions have been employed to design tactile sensors; in particular, solutions based on microfabrication present several attractive features. Microfabrication technologies allow for developing miniaturized sensors with good performance in terms of metrological properties (e.g., accuracy, sensitivity, low power consumption, and frequency response). Small size and good metrological properties heighten the potential role of tactile sensors in medicine, making them especially attractive to be integrated in smart interfaces and microsurgical tools. This paper provides an overview of microfabricated tactile sensors, focusing on the mean principles of sensing, i.e., piezoresistive, piezoelectric and capacitive sensors. These sensors are employed for measuring contact properties, in particular force and pressure, in three main medical fields, i.e., prosthetics and artificial skin, minimal access surgery and smart interfaces for biomechanical analysis. The working principles and the metrological properties of the most promising tactile, microfabricated sensors are analyzed, together with their application in medicine. Finally, the new emerging technologies in these fields are briefly described

    A novel event-based incipient slip detection using Dynamic Active-Pixel Vision Sensor (DAVIS)

    Get PDF
    In this paper, a novel approach to detect incipient slip based on the contact area between a transparent silicone medium and different objects using a neuromorphic event-based vision sensor (DAVIS) is proposed. Event-based algorithms are developed to detect incipient slip, slip, stress distribution and object vibration. Thirty-seven experiments were performed on five objects with different sizes, shapes, materials and weights to compare precision and response time of the proposed approach. The proposed approach is validated by using a high speed constitutional camera (1000 FPS). The results indicate that the sensor can detect incipient slippage with an average of 44.1 ms latency in unstructured environment for various objects. It is worth mentioning that the experiments were conducted in an uncontrolled experimental environment, therefore adding high noise levels that affected results significantly. However, eleven of the experiments had a detection latency below 10 ms which shows the capability of this method. The results are very promising and show a high potential of the sensor being used for manipulation applications especially in dynamic environments

    Tactile Sensing for Robotic Applications

    Get PDF
    This chapter provides an overview of tactile sensing in robotics. This chapter is an attempt to answer three basic questions: \u2022 What is meant by Tactile Sensing? \u2022 Why Tactile Sensing is important? \u2022 How Tactile Sensing is achieved? The chapter is organized to sequentially provide the answers to above basic questions. Tactile sensing has often been considered as force sensing, which is not wholly true. In order to clarify such misconceptions about tactile sensing, it is defined in section 2. Why tactile section is important for robotics and what parameters are needed to be measured by tactile sensors to successfully perform various tasks, are discussed in section 3. An overview of `How tactile sensing has been achieved\u2019 is given in section 4, where a number of technologies and transduction methods, that have been used to improve the tactile sensing capability of robotic devices, are discussed. Lack of any tactile analog to Complementary Metal Oxide Semiconductor (CMOS) or Charge Coupled Devices (CCD) optical arrays has often been cited as one of the reasons for the slow development of tactile sensing vis-\ue0-vis other sense modalities like vision sensing. Our own contribution \u2013 development of tactile sensing arrays using piezoelectric polymers and involving silicon micromachining - is an attempt in the direction of achieving tactile analog of CMOS optical arrays. The first phase implementation of these tactile sensing arrays is discussed in section 5. Section 6 concludes the chapter with a brief discussion on the present status of tactile sensing and the challenges that remain to be solved

    Doctor of Philosophy

    Get PDF
    dissertationTactile sensors are a group of sensors that are widely being developed for transduction of touch, force and pressure in the field of robotics, contact sensing and gait analysis. These sensors are employed to measure and register interactions between contact surfaces and the surrounding environment. Since these sensors have gained usage in the field of robotics and gait analysis, there is a need for these sensors to be ultra flexible, highly reliable and capable of measuring pressure and two-axial shear simultaneously. The sensors that are currently available are not capable of achieving all the aforementioned qualities. The goal of this work is to design and develop such a flexible tactile sensor array based on a capacitive sensing scheme and we call it the flexible tactile imager (FTI). The developed design can be easily multiplexed into a high-density array of 676 multi-fingered capacitors that are capable of measuring pressure and two-axial shear simultaneously while maintaining sensor flexibility and reliability. The sensitivity of normal and shear stress for the FTI are 0.74/MPa and 79.5/GPa, respectively, and the resolvable displacement and velocity are as low as 60 ”m and 100 ”m/s, respectively. The developed FTI demonstrates the ability to detect pressure and shear contours of objects rolling on top of it and capability to measure microdisplacement and microvelocities that are desirable during gait analysis

    Development of an intelligent object for grasp and manipulation research

    Get PDF
    KÔiva R, Haschke R, Ritter H. Development of an intelligent object for grasp and manipulation research. Presented at the ICAR 2011, Tallinn, Estonia.In this paper we introduce a novel device, called iObject, which is equipped with tactile and motion tracking sensors that allow for the evaluation of human and robot grasping and manipulation actions. Contact location and contact force, object acceleration in space (6D) and orientation relative to the earth (3D magnetometer) are measured and transmitted wirelessly over a Bluetooth connection. By allowing human-human, human-robot and robot-robot comparisons to be made, iObject is a versatile tool for studying manual interaction. To demonstrate the efficiency and flexibility of iObject for the study of bimanual interactions, we report on a physiological experiment and evaluate the main parameters of the considered dual-handed manipulation task
    • 

    corecore