5 research outputs found

    A flexible network architecture for 5G systems

    Get PDF
    In this paper, we define a flexible, adaptable, and programmable architecture for 5G mobile networks, taking into consideration the requirements, KPIs, and the current gaps in the literature, based on three design fundamentals: (i) split of user and control plane, (ii) service-based architecture within the core network (in line with recent industry and standard consensus), and (iii) fully flexible support of E2E slicing via per-domain and cross-domain optimisation, devising inter-slice control and management functions, and refining the behavioural models via experiment-driven optimisation. The proposed architecture model further facilitates the realisation of slices providing specific functionality, such as network resilience, security functions, and network elasticity. The proposed architecture consists of four different layers identified as network layer, controller layer, management and orchestration layer, and service layer. A key contribution of this paper is the definition of the role of each layer, the relationship between layers, and the identification of the required internal modules within each of the layers. In particular, the proposed architecture extends the reference architectures proposed in the Standards Developing Organisations like 3GPP and ETSI, by building on these while addressing several gaps identified within the corresponding baseline models. We additionally present findings, the design guidelines, and evaluation studies on a selected set of key concepts identified to enable flexible cloudification of the protocol stack, adaptive network slicing, and inter-slice control and management.This work has been performed in the framework of the H2020 project 5G-MoNArch co-funded by the E

    Sharing gNB components in RAN slicing: A perspective from 3GPP/NFV standards

    Get PDF
    To implement the next Generation NodeBs (gNBs) that are present in every Radio Access Network (RAN) slice subnet, Network Function Virtualization (NFV) enables the deployment of some of the gNB components as Virtual Networks Functions (VNFs). Deploying individual VNF instances for these components could guarantee the customization of each RAN slice subnet. However, due to the multiplicity of VNFs, the required amount of virtual resources will be greater compared to the case where a single VNF instance carries the aggregated traffic of all the RAN slice subnets. Sharing gNB components between RAN slice subnets could optimize the trade-off between customization, isolation and resource utilization. In this article, we shed light on the key aspects in the Third Generation Partnership Project (3GPP)/NFV standards for sharing gNB components. First, we identify four possible scenarios for sharing gNB components. Then, we analyze the impact of sharing on the customization level of each RAN slice subnet. Later, we determine the main factors that enable isolation between RAN slice subnets. Finally, we propose a 3GPP/NFV-based description model to define the lifecycle management of shared gNB componentsThis work is partially supported by the Spanish Ministry of Economy and Competitiveness and the European Regional Development Fund (Project TEC2016-76795-C6-4-R)Spanish Ministry of Education, Culture and Sport (FPU Grant 17/01844)Andalusian Knowledge Agency (project ATIC-241-UGR18)

    Sharing gNB components in RAN slicing: A perspective from 3GPP/NFV standards

    Full text link
    To implement the next Generation NodeBs (gNBs) that are present in every Radio Access Network (RAN) slice subnet, Network Function Virtualization (NFV) enables the deployment of some of the gNB components as Virtual Networks Functions (VNFs). Deploying individual VNF instances for these components could guarantee the customization of each RAN slice subnet. However, due to the multiplicity of VNFs, the required amount of virtual resources will be greater compared to the case where a single VNF instance carries the aggregated traffic of all the RAN slice subnets. Sharing gNB components between RAN slice subnets could optimize the trade-off between customization, isolation and resource utilization. In this article, we shed light on the key aspects in the Third Generation Partnership Project (3GPP)/NFV standards for sharing gNB components. First, we identify four possible scenarios for sharing gNB components. Then, we analyze the impact of sharing on the customization level of each RAN slice subnet. Later, we determine the main factors that enable isolation between RAN slice subnets. Finally, we propose a 3GPP/NFV-based description model to define the lifecycle management of shared gNB componentsComment: Article accepted for publication in IEEE Conference on Standards and Networking (CSCN) 201
    corecore