132 research outputs found

    Digital Control of Power Converters and Drives for Hybrid Traction and Wireless Charging

    Get PDF
    In the last years environmental issues and constant increase of fuel and energy cost have been incentivizing the development of low emission and high efficiency systems, either in traction field or in distributed generation systems from renewable energy sources. In the automotive industry, alternative solutions to the standard internal combustion engine (ICE) adopted in the conventional vehicles have been developed, i.e. fuel cell electric vehicles (FCEVs), hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEV) or pure electric vehicles (EVs), also referred as battery powered electric vehicles (BEV). Both academic and industry researchers all over the world are still facing several technical development areas concerning HEV components, system topologies, power converters and control strategies. Efficiency, lifetime, stability and volume issues have moved the attention on a number of bidirectional conversion solutions, both for the energy transfer to/from the storage element and to/from the electric machine side. Moreover, along with the fast growing interest in EVs and PHEVs, wireless charging, as a new way of charging batteries, has drawn the attention of researchers, car manufacturers, and customers recently. Compared to conductive power transfer (usually plug-in), wireless power transfer (WPT) is more convenient, weather proof, and electric shock protected. However, there is still more research work needs to be done to optimize efficiency, cost, increase misalignment tolerance, and reduce size of the WPT chargers. The proposed dissertation describes the work from 2012 to 2014, during the PhD course at the Electric Drives Laboratory of the University of Udine and during my six months visiting scholarship at the University of Michigan in Dearborn. The topics studied are related to power conversion and digital control of converters and drives suitable for hybrid/electric traction, generation from renewable energy sources and wireless charging applications. From the theoretical point of view, multilevel and multiphase DC/AC and DC/DC converters are discussed here, focusing on design issues, optimization (especially from the efficiency point-of-view) and advantages. Some novel modulation algorithms for the neutral-point clamped three-level inverter are presented here as well as a new multiphase proposal for a three-level buck converter. In addition, a new active torque damping technique in order to reduce torque oscillations in internal combustion engines is proposed here. Mainly, two practical implementations are considered in this dissertation, i.e. an original two-stage bi-directional converter for mild hybrid traction and a wireless charger for electric vehicles fast charge

    Hybrid Active Modulation Strategy for Three-Level Neutral-Point-Clamped Converters in High-Speed Aerospace Drives

    Get PDF
    In the aircraft electric starter/generator system, the three-level neutral-point-clamped converters play a crucial role in driving turbofan engines and delivering onboard electrical power. However, the conventional pulsewidth modulation (PWM) strategies face the challenge of capacitor voltage deviation, large common-mode voltage (CMV), and extra switching losses. Regarding the characteristics of the studied wide-speed range aerospace drives, the modulation scheme needs to be designed according to its operating conditions. To tackle the above demerits, a hybrid active modulation approach is, hence, proposed in this article. By the coordinate-based PWM, the nearest-three-vector is used in the startup process as the neutral-point (NP) voltage balance can be realized with fewer switching intervals; when the drives run in generation mode, an enhanced carrier-based virtual-space-vector modulation technique is involved, which aims to eliminate NP voltage fluctuation, suppress CMV, and simplify the modulation process. With the help of bias-offset injection in the time and voltage domain, capacitor voltages can be effectively kept at a balanced state even though the imbalance exists. The validity of the presented algorithm is proved by simulation and experimental results obtained from a 45 kW, 32 kr/min aircraft starter/generator test rig

    Three-level neutral point-clamped (NPC) traction inverter drive for electric vehicles

    Get PDF
    The motivation of this project was to develop a three level neutral point clamped (NPC) traction inverter for a permanent magnet synchronous machine drive. The three-level inverter helps to reduce the total inverter losses at higher switching frequencies, compared to a two-level inverter for electric vehicle applications. The three-level inverter has also more power switches compared to the two-level inverter. This helps to reduce the voltage stress across the switches and the machine winding. In addition, it also allows an increase in the DC-link voltage, which in turn helps to reduce the DC-link current, phase conductor size and the associated losses. Moreover, at higher DC-bus voltages the power switches will have lower thermal stress when compared to the 2-level. However, the NPC inverter topologies have an inherent problem of DC-link voltage balancing. In the initial part of this thesis, a novel space vector based DC-link voltage balancing strategy is proposed. This strategy can keep the two DC-link capacitor voltages balanced during transient changes in both speed and torque. The performance of the three-level inverter system is then compared with a two-level inverter based drive to validate its performance improvement. The results showed a significant reduction in total voltage and current harmonic distortions, reduced total inverter losses (by 2/3rd) and was even was able to keep the neutral point fluctuation low at all operating load power factor conditions. The second motivation of this thesis was to reduce the computational time in the real-time implementation of the control logic. For this purpose, a modified carrier and hybrid-carrier based PWM strategy was proposed, which also kept the DC-link capacitor voltages balanced. The modified carrier based strategy was able to reduce the switching losses compared to the conventional strategies, while the hybrid-carrier based strategy kept the advantages of both carrier and the space vector techniques. Finally, a performance comparison study was carried out to compare the total harmonic distortion, switching loss distribution, and total inverter loss of all the four proposed strategies

    Common-Mode Voltage Elimination in Multilevel Power Inverter-Based Motor Drive Applications

    Get PDF
    [EN] The industry and academia are focusing their efforts on finding more efficient and reliable electrical machines and motor drives. However, many of the motors driven by pulse-width modulated converters face the recurring problem of common-mode voltage (CMV). In fact, this voltage leads to other problems such as bearing breakdown, deterioration of the stator winding insulation and electromagnetic interferences (EMI) that can affect the lifespan and correct operation of the motors. In this sense, multilevel converters have proven to be a useful tool for solving these problems and mitigating CMV over the past few decades. Among other reasons, because they provide additional degrees of freedom when comparing with two-level converters. However, although there are several proposals in the scientific literature on this topic, no complete information has been reviewed about the CMV issues and the different multilevel alternatives that can be used to solve it. In this context, the objective of this work is to determine how multilevel power converters provide additional degrees of freedom to make the reduction of the CMV possible by using specific modulation techniques, making it easier for engineers and scientists in this field to find solutions to this problem. This document consists of a descriptive study that collects the strengths and weaknesses of most important multilevel power converters, with special emphasis on how CMV affects each of them. In addition, the differences of modulation techniques aimed to the CMV reduction are explained in terms of output voltage, operating linear range, and generated CMV. Considering this last, it is recommended to use those modulation techniques that allow the generation of CMV levels of 0 V in order to be able to completely eliminate said voltage.This work was supported in part by the Government of the Basque Country within the Fund for Research Groups of the Basque University System under Grant IT978-16; in part by the Research Program ELKARTEK under Project ENSOL2-KK-2020/00077; in part by the Secretaria d'Universitats i Recerca del Departament d'Empresa i Coneixement de la Generalitat de Catalunya; in part by the Ministerio de Ciencia, Innovacion y Universidades of Spain under Project PID2019-111420RB-I00 and Project PID2020-115126RB-I00; and in part by the FEDER Funds

    Common-mode voltage elimination in multilevel power inverter-based motor drive applications

    Get PDF
    The industry and academia are focusing their efforts on finding more efficient and reliable electrical machines and motor drives. However, many of the motors driven by pulse-width modulated converters face the recurring problem of common-mode voltage (CMV). In fact, this voltage leads to other problems such as bearing breakdown, deterioration of the stator winding insulation and electromagnetic interferences (EMI) that can affect the lifespan and correct operation of the motors. In this sense, multilevel converters have proven to be a useful tool for solving these problems and mitigating CMV over the past few decades. Among other reasons, because they provide additional degrees of freedom when comparing with two-level converters. However, although there are several proposals in the scientific literature on this topic, no complete information has been reviewed about the CMV issues and the different multilevel alternatives that can be used to solve it. In this context, the objective of this work is to determine how multilevel power converters provide additional degrees of freedom to make the reduction of the CMV possible by using specific modulation techniques, making it easier for engineers and scientists in this field to find solutions to this problem. This document consists of a descriptive study that collects the strengths and weaknesses of most important multilevel power converters, with special emphasis on how CMV affects each of them. In addition, the differences of modulation techniques aimed to the CMV reduction are explained in terms of output voltage, operating linear range, and generated CMV. Considering this last, it is recommended to use those modulation techniques that allow the generation of CMV levels of 0 V in order to be able to completely eliminate said voltage.This work was supported in part by the Government of the Basque Country within the Fund for Research Groups of the Basque University System under Grant IT978-16; in part by the Research Program ELKARTEK under Project ENSOL2-KK-2020/00077; in part by the Secretaria d’Universitats i Recerca del Departament d’Empresa i Coneixement de la Generalitat de Catalunya; in part by the Ministerio de Ciencia, Innovacion y Universidades of Spain under Project PID2019-111420RB-I00 and Project PID2020-115126RB-I00; and in part by the FEDER Funds.Peer ReviewedPostprint (author's final draft

    Active Modulation Strategy for Capacitor Voltage Balancing of Three-Level Neutral-Point-Clamped Converters in High-Speed Drives

    Get PDF
    In this paper, the equivalent relationship between the nearest-three-virtual space vector (NTV2) and carrier-based pulse-width-modulation (CBPWM) scheme is established based on space vector coordinate for a three-level neutral-point-clamped (3L-NPC) converter. Moreover, to solve the neutral-point (NP) voltage imbalance problem of the studied 3L-NPC converter-fed high-speed drives, an active modulation strategy with the generalized bias-offset injection technique is proposed. Meanwhile, the excessive computational burden is significantly overcome by the fast calculation approach. The effectiveness of the proposed modulation algorithm is validated through both simulation and experimental results obtained from a 45 kW, 32 krpm aircraft electric starter/generator (ESG) prototype system

    An Advanced Dual-Carrier-Based Multi-Optimized PWM Strategy of Three-Level Neutral-Point-Clamped Converters for More-Electric-Aircraft Applications

    Get PDF
    Since three-level neutral-point-clamped (3L-NPC) power generation units bring much competitiveness to the next-generation electric starter/generator (ESG) system for more-electric-aircraft (MEA) applications, the versatile multi-optimized pulse-width-modulation (PWM) becomes a key enabler to this technology. Regarding the mission profile of the state-of-art ESG, the operating points at the cruise feature a high modulation index and low power factor. This means that the neutral-point potential (NPP) fluctuation becomes severe. Besides, if switching states are not configured properly, not only could the lifetime of capacitors be threatened but also irreversible damage to bearing insulation occurs due to the common-mode voltage (CMV), followed by devastating effects on the reliability of other avionic facilities. Given the limitations of the 270VDC unipolar dc-bus structure, deep flux-weakening currents are constantly required for the high speed, resulting in more machine copper losses. To address these issues without any hardware-level efforts, an advanced PWM strategy with dual-carrier-based implementation is proposed in this article, which achieves boosted dc-link voltage utilization, CMV reduction and balanced NPP at the same time. Simulation results obtained from Simulink/PLECS and experimental results obtained from a 45 kW, 32 krpm ESG prototype system verify the effectiveness and feasibility of the proposed algorithm

    Modular multilevel converter with embedded battery cells for traction drives

    Get PDF
    This thesis proposes a new modular multilevel converter with embedded cell balancing for battery electric vehicles. In this topology, the battery cells are directly connected to the half-bridge choppers of the sub-modules, allowing the highest flexibility for the discharge and recharge of each individual cell. Tht: traditional battery management system is replaced by the control of the converter, which individually balances all the cells. A new balancing algorithm is presented and discussed in. the thesis, showing that the converter generates symmetric three-phase voltages with low harmonic distortion even for significantly unbalanced cells. The thesis also analyses stationary recharge of the battery cells from both three-phase and single-phase ac sources. The performance of the converter as a traction drive is assessed in terms of torque-speed characteristic and power losses for the full frequency range, including field weakening. A simplified model for estimating conduction and switching losses for the proposed modular multilevel converter is presented and the results for a typical driving cycle are compared with a traditional two-level converter. Simulation and experimental results on a kW-size prototype have confirmed the feasibility of the proposed traction modular converter in terms of effectiveness of the cell balancing control, validity of the proposed loss model, suitability of use for traction and effectiveness of recharging operations

    Addressing control and capacitor voltage regulation challenges in multilevel power electronic converters

    Get PDF
    Multilevel power electronic converters are the current industry solutions for applications that demand medium voltage, reasonable efficiency, and high power quality. The proper operation of these types of power converters requires special control, modulation methods, and capacitor voltage regulation techniques. Both developing capacitor voltage regulation methods and addressing their associated issues with such fall within the primary focus of this dissertation. In this dissertation an investigation was conducted on the capacitor voltage regulation constraints in cascaded H-bridge multilevel converters with a staircase output voltage waveform. In the proposed method, the harmonic elimination technique is used to determine the switching angles. A constraint was then derived to identify modulation those indices that lead to voltage regulation of the capacitor. This constraint can be used in optimization problems for harmonic minimization to guarantee capacitor voltage regulation in these types of converters. Furthermore, a capacitor voltage regulation method was developed using redundant state selection for a flying capacitor active rectifier. This method reduces the number of switching instances by using both online and offline state selection procedure. Additionally, a start-up procedure is proposed that pre-charges the all of capacitors in the rectifier to both avoid overstressing the switches and obtain a smoother start-up. Finally, a flexible capacitor voltage regulation method is proposed that provides the ability to control the voltage of the capacitors in both cascaded H-bridge and hybrid multilevel converters. In this method, the capacitor voltage in each individual H-bridge cell is independently regulated by controlling the active power of each cell
    • …
    corecore