39,551 research outputs found

    Adaptive Computation of the Swap-Insert Correction Distance

    Full text link
    The Swap-Insert Correction distance from a string SS of length nn to another string LL of length mnm\geq n on the alphabet [1..d][1..d] is the minimum number of insertions, and swaps of pairs of adjacent symbols, converting SS into LL. Contrarily to other correction distances, computing it is NP-Hard in the size dd of the alphabet. We describe an algorithm computing this distance in time within O(d2nmgd1)O(d^2 nm g^{d-1}), where there are nαn_\alpha occurrences of α\alpha in SS, mαm_\alpha occurrences of α\alpha in LL, and where g=maxα[1..d]min{nα,mαnα}g=\max_{\alpha\in[1..d]} \min\{n_\alpha,m_\alpha-n_\alpha\} measures the difficulty of the instance. The difficulty gg is bounded by above by various terms, such as the length of the shortest string SS, and by the maximum number of occurrences of a single character in SS. Those results illustrate how, in many cases, the correction distance between two strings can be easier to compute than in the worst case scenario.Comment: 16 pages, no figures, long version of the extended abstract accepted to SPIRE 201

    A different kind of string

    Get PDF
    In U(1) lattice gauge theory in three spacetime dimensions, the problem of confinement can be studied analytically in a semi-classical approach, in terms of a gas of monopoles with Coulomb-like interactions. In addition, this theory can be mapped to a spin model via an exact duality transformation, which allows one to perform high-precision numerical studies of the confining potential. Taking advantage of these properties, we carried out an accurate investigation of the effective string describing the low-energy properties of flux tubes in this confining gauge theory. We found striking deviations from the expected Nambu-Goto-like behavior, and, for the first time, evidence for contributions that can be described by a term proportional to the extrinsic curvature of the effective string worldsheet. Such term is allowed by Lorentz invariance, and its presence in the infrared regime of the U(1) model was indeed predicted by Polyakov several years ago. Our results show that this term scales as expected according to Polyakov's solution, and becomes the dominant contribution to the effective string action in the continuum limit. We also demonstrate analytically that the corrections to the confining potential induced by the extrinsic curvature term can be related to the partition function of the massive perturbation of a c=1 bosonic conformal field theory. The implications of our results for SU(N) Yang-Mills theories in three and in four spacetime dimensions are discussed.Comment: 1+21 pages, 2 figures; v2 (1+24 pages, 2 figures): improved the discussion in the conclusions' section, added an appendix, included new references, updated the affiliation details for one of the authors, corrected typos: version published in the journa

    Static quark potential and effective string corrections in the (2+1)-d SU(2) Yang-Mills theory

    Full text link
    We report on a very accurate measurement of the static quark potential in SU(2) Yang-Mills theory in (2+1) dimensions in order to study the corrections to the linear behaviour. We perform numerical simulations at zero and finite temperature comparing our results with the corrections given by the effective string picture in these two regimes. We also check for universal features discussing our results together with those recently published for the (2+1)-d Z(2) and SU(3) pure gauge theories.Comment: 29 pages, 6 figure

    Grand-canonical simulation of two-dimensional simplicial gravity

    Get PDF
    The string susceptibility exponents of dynamically triangulated 2-dimensional surfaces with various topologies, such as a sphere, torus and double-torus, were calculated by the grand-canonical Monte Carlo method. These simulations were made for surfaces coupled to dd-Ising spins (dd=0,1,2,3,5). In each simulation the area of surface was constrained to within 1000 to 3000 of triangles, while maintaining the detailed-balance condition. The numerical results show excellent agreement with theoretical predictions as long as d2d \leq 2.Comment: 9 pages, Latex include 5 postscript figures, using psfig.sty and cite.st

    The confining string beyond the free-string approximation in the gauge dual of percolation

    Full text link
    We simulate five different systems belonging to the universality class of the gauge dual of three-dimensional random percolation to study the underlying effective string theory at finite temperature. All the data for the finite temperature string tension, when expressed by means of adimensional variables, are nicely described by a unique scaling function. We calculate the first few terms of the string tension up to order T6T^6 and compare to different theoretical predictions. We obtain unambiguous evidence that the coefficients of T2T^2 and T4T^4 terms coincide with those of the Nambu-Goto string, as expected, while the T6T^6 term strongly differs and is characteristic of the universality class of this specific gauge theory.Comment: 13 pages, 3 figure

    CiNCT: Compression and retrieval for massive vehicular trajectories via relative movement labeling

    Full text link
    In this paper, we present a compressed data structure for moving object trajectories in a road network, which are represented as sequences of road edges. Unlike existing compression methods for trajectories in a network, our method supports pattern matching and decompression from an arbitrary position while retaining a high compressibility with theoretical guarantees. Specifically, our method is based on FM-index, a fast and compact data structure for pattern matching. To enhance the compression, we incorporate the sparsity of road networks into the data structure. In particular, we present the novel concepts of relative movement labeling and PseudoRank, each contributing to significant reductions in data size and query processing time. Our theoretical analysis and experimental studies reveal the advantages of our proposed method as compared to existing trajectory compression methods and FM-index variants

    The Lorentz-invariant boundary action of the confining string and its universal contribution to the inter-quark potential

    Full text link
    We study the boundary contribution to the low energy effective action of the open string describing the confining flux tube in gauge theories. The form of the boundary terms is strongly constrained by the requirement of Lorentz symmetry, which is spontaneously broken by the formation of a long confining flux tube in the vacuum. Writing the boundary action as an expansion in the derivatives of the Nambu-Goldstone modes describing the transverse fluctuations of the string, we single out and put in a closed form the first few Lorentz invariant boundary terms. We also evaluate the leading deviation from the Nambu-Goto string produced by the boundary action on the vacuum expectation value of the Wilson loop and we test this prediction in the 3d Ising gauge model. Our simulation attains a level of precision which is sufficient to test the contribution of this term.Comment: 17 pages, 5 figures, LateX 2e. V2: Final version published on JHEP. Fixed typos in eq.s 2.2, 2.3, 3.7, 3.8, A.4. Extended explanation of the procedures used in sec 2 to determine the possible boundary terms up to field redefinitions and of the procedure used in sec 4 to take the continuum limit. V3: typos corrected in eq.s (4.3) (4.5) and (4.6), acknowledgements adde
    corecore