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Abstract: In U(1) lattice gauge theory in three spacetime dimensions, the problem of

confinement can be studied analytically in a semi-classical approach, in terms of a gas

of monopoles with Coulomb-like interactions. In addition, this theory can be mapped

to a spin model via an exact duality transformation, which allows one to perform high-

precision numerical studies of the confining potential. Taking advantage of these properties,

we carried out an accurate investigation of the effective string describing the low-energy

properties of flux tubes in this confining gauge theory. We found striking deviations from

the expected Nambu-Goto-like behavior, and, for the first time, evidence for contributions

that can be described by a term proportional to the extrinsic curvature of the effective

string worldsheet. Such term is allowed by Lorentz invariance, and its presence in the

infrared regime of the U(1) model was indeed predicted by Polyakov several years ago.

Our results show that this term scales as expected according to Polyakov’s solution, and

becomes the dominant contribution to the effective string action in the continuum limit.

We also demonstrate analytically that the corrections to the confining potential induced

by the extrinsic curvature term can be related to the partition function of the massive

perturbation of a c = 1 bosonic conformal field theory. The implications of our results for

SU(N) Yang-Mills theories in three and in four spacetime dimensions are discussed.
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1 Introduction

One of the most interesting recent results in the effective string description of the dynamics

of long flux tubes in confining Yang-Mills theories is the proof of universality of the first few

terms in their effective action. This is a direct consequence of the symmetry constraints one

must impose on the action, and makes this effective theory much more predictive than other

effective models in particle physics. These constraints were first obtained by comparing

the string partition function in different channels (“open-closed string duality”) [1, 2].

However, it was later realized [3–7] that there was a simpler way to understand these

constraints and that they are, in fact, a direct consequence of Poincaré symmetry in the

underlying Yang-Mills theory. There are two main routes one can follow to impose this

symmetry in the effective action. The first is to keep the original string action, without

fixing the reparametrization invariance. This approach is not the simplest one to perform

calculations, but it allows a better understanding of the various terms which appear in an

expansion around the long-string limit. In this framework the effective action is obtained

by the mapping

Xµ :M→ RD, µ = 0, · · · , D − 1 (1.1)
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of the two-dimensional surface describing the worldsheet of the string M into the (flat)

D-dimensional target space RD of the gauge theory (here and in the following, we assume

Euclidean signature for both the worldsheet and the target space) and then imposing the

constraint due to Poincaré and parity invariance of the original theory. This approach

was discussed in detail in ref. [8]. The first few terms of the action compatible with these

constraints are suitable combinations of geometric invariants, which can be constructed

from the induced metric gαβ = ∂αX
µ∂βXµ. These terms can be classified according to

their “weight”, defined as the difference between the number of derivatives minus the

number of fields Xµ (i.e., as their energy dimension). Due to invariance under parity, only

terms with an even number of fields should be considered. The only term of weight zero

corresponds to the well-known Nambu-Goto (NG) action

SNG = σ

∫
d2ξ
√
g , (1.2)

where g ≡ det(gαβ) and we have denoted the worldsheet coordinates as ξ ≡ (ξ0, ξ1). This

term has a natural geometric interpretation: it measures the area of the string worldsheet.

At weight two, two new contributions appear:

S2,R = γ

∫
d2ξ
√
gR, (1.3)

S2,K = α

∫
d2ξ
√
gK2, (1.4)

where σ, α, and γ are the only free parameters of the effective theory up to this level,

R denotes the Ricci scalar constructed from the induced metric, and K is the extrinsic

curvature, defined as K = ∆(g)X, with

∆(g) =
1√
(g)

∂a[
√

(g)gab∂b] (1.5)

the Laplacian in the space with metric gαβ.

At weight four, several new combinations can be constructed, including for instance a

term proportional to the square of the Ricci scalar. The argument which is used at this point

to further constrain the effective action is that the term proportional to R is topological in

two dimensions and, since in the long-string limit we are interested in one does not expect

topology-changing fluctuations, its contribution can be neglected [8]. On the other hand,

the term in eq. (1.4) which contains K2 is proportional to the equation of motion of the

Nambu-Goto Lagrangian and can be eliminated by a suitable field redefinition. Hence also

this term can be neglected — at least from a classical point of view.

The same result can be obtained following the second of the two routes mentioned

above, fixing the reparametrization invariance to the unitary gauge (often called “physical

gauge”), which we are going to assume in the following. In this gauge the two worldsheet

coordinates are identified with the longitudinal degrees of freedom (d.o.f.) of the string:

ξ0 = X0, ξ1 = X1, so that the string action can be expressed as a function of the (D − 2)

d.o.f. corresponding to the transverse displacements of the string worldsheet, Xi, with
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i = 2, . . . , (D − 1). With this choice, one is neglecting worldsheet configurations corre-

sponding to “back-tracking” or self-intersecting surfaces. This is a good approximation

for applications in the infrared dynamics of confining gauge theories, and it makes the

transverse displacements single-valued functions of the worldsheet coordinates (thereby

simplifying analytical computations). This restriction can be interpreted as an analogue

of the aforementioned assumption, that the Ricci scalar is constant for the string world-

sheet surfaces.

The action can then be written as a low-energy expansion in the number of derivatives

of the transverse d.o.f. of the string. The first few terms in this expansion are

S = Scl +
σ

2

∫
d2ξ

[
∂αXi · ∂αXi + c2(∂αXi · ∂αXi)2 + c3(∂αXi · ∂βXi)2 + . . .

]
, (1.6)

where the classical action Scl includes the terms corresponding to the minimal area of

the string worldsheet (and possibly a perimeter term), while the second term describes

a massless free field theory in two dimensions [9] and subsequent terms correspond to

higher-order interactions among the Xi fields.

The main point in this derivation is that the ci coefficients are not completely arbitrary,

but must satisfy a set of constraints to enforce Lorentz invariance of the theory. In fact,

even though the SO(D) invariance of the original theory is spontaneously broken by the

formation of the classical string configuration around which one is expanding, the effective

action should still respect this symmetry through a non-linear realization in terms of the

transverse fields Xi [3–7]. These non-linear constraints induce a set of recursive relations

among the coefficients of the expansion, which strongly reduce the number of free parame-

ters of the theory. In particular, it can be shown that the terms with only first derivatives

coincide with the Nambu-Goto action to all orders in the derivative expansion [10]. Im-

posing these constraints to the next-to-leading-order terms (i.e. to the terms beyond the

Nambu-Goto action) in the effective string action, one obtains the gauge-fixed version of

the two contributions S2,R and S2,K mentioned above [6, 7]. At this point, using the

Nambu-Goto equations of motion and a suitable redefinition of the Xi fields, it is possible

to show that, for the ground-state quark-antiquark potential V (R) (where R denotes the

distance between the static color sources, which is taken to be large) in a confining theory

in three spacetime dimensions, the first deviation with respect to the prediction given by

the pure Nambu-Goto action appears only at O(R−7).

The fact that the first deviations from the Nambu-Goto string appear at such a high

order explains why earlier Monte Carlo calculations [11, 12] found good agreement with

the predictions of a Nambu-Goto string.

However, thanks to the improvement in the accuracy of simulations, during the past

few years it has become possible to observe deviations from the expected “universal” be-

havior [13–16]. These deviations were observed both in the excited string states of SU(N)

Yang-Mills theories [13, 16] and in the ground-state potential in the Z2 lattice gauge the-

ory in three dimensions (3D). In the latter case, deviations were observed for worldsheets

with torus [14] and cylinder topology [15]. For recent reviews of lattice studies about these

subjects, see ref. [17, sub-subsections (5.1.3) and (5.2.2)] and ref. [18].
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In all of the cases above, these corrections were rather small and required high-precision

lattice simulations to be observed. By contrast, the situation in the 3D U(1) theory is

dramatically different: as it will be shown in detail in the present article, macroscopic

deviations from the expectations described above can be observed for a wide range of

distances and values of the Wilson action parameter β = 1/(ae2) (where a denotes the

lattice spacing and e is the coupling, which in 3D has energy dimension 1/2) [19]. These

deviations turn out to be incompatible with the expected, O(R−7) terms. These results

prompted us to reconsider the various steps of the above analysis, and led us to realize that

the field redefinition needed to eliminate the extrinsic curvature is anomalous and that this

term, which can be indeed eliminated at tree level, may give a non trivial contribution at

one loop that, in a certain range of values of R, could be more important than the O(R−7)

correction mentioned above.

In this article we present a complete set of novel numerical results for the confining

potential in the 3D U(1) theory, and show that they can be described for all β values by

including the extrinsic-curvature contribution in the effective string action. This confirms

for the first time an earlier theoretical prediction by Polyakov, who first suggested the

presence of an extrinsic-curvature term in the effective string action for this model in

ref. [20]. Our lattice results confirm his prediction and allow to quantify its effect in the

interquark potential.

This article is organized as follows. In the next section the main properties of the U(1)

model in three spacetime dimensions are discussed. In section 3 we review the basics of

the effective string description for confining gauge theories and discuss the zeta-function

regularization of the extrinsic-curvature term. Then, in section 4 we present our new

Monte Carlo results and compare them with the effective string prediction. The last

section 5 includes comments on the implications of our results for non-Abelian SU(N)

gauge theories and some concluding remarks. Finally, in the appendix A we show that,

although classically the extrinsic-curvature term in the action can be reabsorbed into the

Gaussian one through a simple field redefinition, the latter reproduces the rigid-string

contribution via quantum effects at one loop.

2 U(1) gauge theory in three spacetime dimensions

In this section we summarize some well-know facts about the U(1) gauge theory in three

spacetime dimensions, and the lattice regularization thereof, defined by the Wilson ac-

tion [21]

β
∑
x∈Λ

∑
1≤µ<ν≤3

[1− ReUµν(x)] , with β =
1

ae2
, (2.1)

where Λ denotes an isotropic cubic lattice of spacing a, e is the bare lattice coupling, and

Uµν(x) = Uµ(x)Uν(x+aµ̂)U?µ(x+aν̂)U?ν (x), with Uµ(x) = exp [iaAµ (x+ aµ̂/2)] . (2.2)

The remarkable feature of this theory is that it can be studied analytically in the semi-

classical approximation [22, 23]: one can show that the model is confining for all values of
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β, and that in the β � 1 limit it reduces to a theory of free massive scalars. In this limit,

the mass of the lightest glueball and the string tension (in lattice units) behave as

m0a = c0

√
8π2βe−π

2v(0)β, σa2 ≥ cσ√
2π2β

e−π
2v(0)β, (2.3)

where v(0) ' 0.2527 . . . denotes the zero-distance Coulomb potential in lattice units, and

in the semi-classical approximation c0 = 1 and cσ = 8. Previous numerical studies [24]

(which our simulations confirm) showed that the string tension saturates this bound and

that both constants are affected by the semi-classical approximation, changing their values

in the continuum limit. Despite these quantitative differences, both m0 and σ remain

strictly positive, so the model is confining at any value of β. The point in using such

lattice model at finite spacing is that, while in general for confining lattice gauge theories

the m0/
√
σ ratio is approximately fixed (up to discretization effects), in this model we have

m0√
σ

=
2c0√
cσ

(2π2β)3/4e−π
2v(0)β/2, (2.4)

so, by changing β, we can tune the m0/
√
σ ratio of the lattice theory to any chosen value.

2.1 Duality transformation

Since the model is invariant under an Abelian gauge symmetry, one can easily perform

a duality transformation [25] (see also refs. [26, 27] for a discussion) and obtain a simple

spin model with global Z symmetry and integer-valued ?s variables, defined on the sites

of the dual lattice (note that, in D = 3 + 1 dimensions, the same transformation leads to

a model with local Z symmetry [28–32]). More precisely, the duality transformation is an

exact map of the original partition function to

Z =
∑
{?s∈Z}

∏
links

I|d?s|(β), (2.5)

where Iν(z) denotes the modified Bessel function of the first kind of order ν, the product

runs over the elementary links of the dual lattice, and d?s denotes the difference between
?s variables at the ends of a link.

The dual formulation of the system has several advantages over the original one. First

of all, from the computational point of view, the model is much easier and faster to simulate,

since we deal with a spin model. Moreover, a QQ̄ pair of static sources (at a distance R

from each other) can be easily included in the partition function of the dual model, which

then takes the form

ZR =
∑
{?s∈Z}

∏
links

I|d?s+?n|(β), (2.6)

where ?n is an integer-valued 1-form which must be non-vanishing on a set of links dual

to an arbitrary surface bounded by the two loops (in our implementation, we chose the

surface of minimal area).

As a consequence, the two-point correlation function of Polyakov loops P can be writ-

ten as

〈P ?(R)P (0)〉 =
ZR
Z
. (2.7)
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For large R, the quantity appearing on the right-hand side of eq. (2.7) is the ratio of two

partition functions dominated by poorly overlapping sets of typical configurations, and,

as a consequence, computing the expectation value of the QQ̄ pair involves the numerical

challenge of an exponentially decaying signal-to-noise ratio. This happens both in the

original and in the dual formulation. However, in the dual formulation this problem can be

bypassed, as the ratio on the right-hand side of eq. (2.7) can be factorized into a product

of ratios, in which each numerator is the partition function of a system differing from

the one described by the denominator by the insertion of a non-vanishing ?n only on one

link. Denoting the length of the Polyakov loops and their separation in units of the lattice

spacing as nt and nR respectively, one obtains:

〈P ?(R)P (0)〉 =

nRnt−1∏
i=0

Z(i+1)

Z(i)
. (2.8)

This factorization, first proposed in the computation of ’t Hooft loops in SU(2) Yang-Mills

theory in ref. [33], goes under the name of “snake algorithm”, and allows one to recon-

struct 〈P ?(R)P (0)〉 from the product of factors which are not affected by a severe overlap

problem (since the partition functions of systems which differ by the insertion of only one

additional non-vanishing ?n are dominated by contributions from largely overlapping sets

of typical configurations).

In addition, the efficiency in the numerical computation of the Z(i+1)/Z(i) ratios on

the right-hand side of eq. (2.8) can be easily improved by means of a hierarchical update

scheme (in which, taking advantage of the locality of the theory, portions of the lattice in

the neighborhood of the ?n term, by which numerator and denominator differ, are updated

more often), as was done for the 3D Z2 gauge theory in ref. [34].

2.2 A rigid-string description for the U(1) model

Besides its expediency for numerical computations, the other major advantage of the dual-

ity transformation is that it gives insight into the physical mechanism driving confinement.

Indeed, it reveals that confinement in the 3D U(1) gauge model is due to the condensation

of monopole configurations [22]. The remarkable success of this approach led to conjecture

that a similar mechanism could drive confinement also in non-Abelian Yang-Mills theo-

ries, including, in particular, in the SU(3) theory in four spacetime dimensions. According

to this conjecture (known as the “dual superconductor picture”), quarks are confined by

vortex lines which behave as strings.

The implicit assumption behind this scenario is that there should exist a duality trans-

formation mapping gauge fields into strings. In the non-Abelian case, such gauge/string

duality transformation is in general unknown,1 but in the 3D U(1) case Polyakov [20]

(see also [38] for an alternative derivation) was able to give a heuristic proof of this map-

ping and proposed to describe the free energy of a large Wilson loop with a string action

combining both the Nambu-Goto and the extrinsic curvature terms (the so called “rigid

1A notable exception, however, is given by the holographic correspondence, relating gauge theories and

string theories defined in a higher-dimensional spacetime [35–37].
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string”). Polyakov was also able to compute the dependence of their coupling constants on

the electric charge and the glueball mass of the original U(1) theory (see ref. [20, eq. (17)]):

SPol = c1e
2m0

∫
d2ξ
√
g + c2

e2

m0

∫
d2ξ
√
gK2, (2.9)

where c1 and c2 are two undetermined constants. If we identify these coupling constants

with σ and α defined above, we find (apart from an undetermined constant)
√
σ/α ∼ m0.

This result will play an important rôle in the following.

3 Effective string action and extrinsic curvature

Following the discussion of section 1, the most general effective string action involving only

terms up to weight 2 respecting Poincaré invariance is

S = SNG + S2,K + Sb, (3.1)

where, as explained in section 1, we neglected the term proportional to the Ricci scalar,

but included the term proportional to the square of the extrinsic curvature.

In addition, we also included a boundary term Sb, which describes the interaction of

the effective string with the Polyakov loops. Also the form of Sb is strongly constrained

by Poincaré invariance: if the boundary is a Polyakov line in the ξ0 direction located at

ξ1 = 0, for which we assume Dirichlet boundary conditions, Xi(ξ0, 0) = 0, then, in the

physical gauge Sb can be expanded as

Sb =

∫
dξ0

[
b1∂1Xi · ∂1X

i + b2∂1∂0Xi · ∂1∂0X
i + . . .

]
. (3.2)

Imposing Lorentz invariance one can show that b1 = 0 [1, 10] and that the term having

b2 as its coefficient is nothing but the first contribution arising from the Lorentz-invariant

combination [39]

b2

∫
dξ0

[
∂0∂1Xi · ∂0∂1X

i

1 + ∂1Xi · ∂1Xi
−
(
∂0∂1Xi · ∂1X

i
)2

(1 + ∂1Xi · ∂1Xi)2

]
. (3.3)

The precision of our data is sufficient to identify finite-size corrections in the interquark

potential up to O(R−4): hence, we truncate the expansion of eq. (3.1) in powers of X to

the corresponding order. Moreover, from now on we restrict our attention to the D = 3

case, so that the transverse displacement of the string from its classical configuration is

described by a single bosonic field X(ξ1, ξ2). We find:2

SNG ' Scl +
σ

2

∫
d2ξ

[
∂αX · ∂αX −

1

4
(∂αX · ∂αX)2

]
, (3.4)

S2,K ' α

∫
d2ξ(∆X)2, (3.5)

Sb ' b2

∫
dξ0 [∂1∂0X · ∂1∂0X] . (3.6)

2In eq. (3.5) we truncate the rigidity term to the Gaussian part, since higher-order terms give corrections

beyond our resolution.
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Thus we are left with three free parameters (σ, α and b2) which will be fitted comparing

with the numerical data.

The action in eq. (3.1) has a long history. Originally introduced to describe the physics

of fluid membranes [40–42], it was later proposed by Polyakov and by Kleinert as a way

to stabilize the Nambu-Goto action [43, 44]. Its contribution to the interquark potential

was evaluated in the large-D limit in ref. [45], and then for generic D in ref. [46]. The

corrections induced in higher-order terms of the spectrum have been recently evaluated

in ref. [47].

In the next subsection, we will re-discuss this action from a slightly different point

of view.

3.1 Zeta-function regularization of the extrinsic curvature action

The contribution of the extrinsic-curvature term to the interquark potential can be eval-

uated using the zeta-function regularization [48]. Let us review the main steps of this

calculation. Let us first concentrate on the contribution due to the Gaussian integration

over transverse d.o.f.: the Gaussian part of the action is

S = σ

∫ Nt

0
dt

∫ R

0
dr

[
1 +

1

2
∂αX · ∂αX

]
+ α

∫ Nt

0
dt

∫ R

0
dr (∆X)2, (3.7)

where R denotes the interquark distance, Nt is the system size in the Euclidean time

direction (i.e. the length of the Polyakov loops) and ∆ is the two-dimensional Laplace

operator ∆ = ∂2/∂t2 + ∂2/∂r2. As we are interested in evaluating the contribution for

Polyakov-loop correlators, we assume that the X field obeys periodic boundary conditions

in the Euclidean time direction, X(t, r) = X(t + Nt, r), and fixed boundary conditions

in the direction of the spatial separation between the loops, X(t, 0) = X(t, R) = 0. The

interquark potential is defined as

V (R) = − lim
Nt→∞

1

Nt
ln

{∫
[DX]e−S[X]

}
, (3.8)

where the functional integral on the right-hand side is performed over string worldsheet

configurations satisfying the boundary conditions defined above.

The Gaussian part of the action can be rewritten as

S = σ

∫ Nt

0
dt

∫ R

0
dr

[
1 +

1

2
X

(
1− 2α

σ
∆

)
(−∆)X

]
. (3.9)

Carrying out the Gaussian integration, one obtains3

V (R) = lim
Nt→∞

{
σR+

1

2Nt
Tr ln(−∆) +

1

2Nt
Tr ln

(
1− ∆

m2

)}
, with m2 =

σ

2α
.

(3.10)

3Note that for regularized determinants in general it is not true that det(AB) = (detA)(detB), and one

has to face the possible presence of multiplicative anomalies. However it can be shown that for Lapalace-type

operators in two dimensions the anomaly vanishes and the above relation holds unchanged [49].
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The parameter m, with dimensions of a mass, encodes the contribution due to the extrinsic

curvature.

Eq. (3.10) reveals that, at the Gaussian level, the interquark potential is the sum of a

contribution from a free massless bosonic field plus a free massive bosonic field. The mass

of the latter is m, and is inversely proportional to the square root of the (dimensionless)

coefficient of the extrinsic-curvature term appearing in the action. Following Polyakov’s

analysis, we may assume that in the 3D U(1) case m is proportional to the mass of the

lightest glueball in the theory, m0.

The operator traces appearing in eq. (3.10) can be readily evaluated using a zeta-

function regularization, leading to the standard Lüscher term for the contribution from the

massless term and to the following contribution for the massive case [48, 50]:

V (R) = σR+ VNG(R) + Vext(R,m), (3.11)

where VNG(R) and Vext(R,m) are the Gaussian limits of the Nambu-Goto and of the

extrinsic-curvature contributions respectively:

VNG(R) ≡ lim
Nt→∞

1

2Nt
Tr ln(−∆) = − π

24R
, (3.12)

Vext(R,m) ≡ lim
Nt→∞

1

2Nt
Tr ln

(
1− ∆

m2

)
= −m

2π

∞∑
n=1

K1 (2nmR)

n
, (3.13)

where Kα(z) denotes a modified Bessel function of the second kind.

Vext(R,m) has very interesting analytical properties. It is an analytic function of R and

m for real positive values of mR. It has a logarithmic branching point at R = 0 and, what

is most interesting for our purposes, a set of square-root singularities for negative values of

(mR)2. The first of these singularities is located at (mR)2 = −π2, and defines the radius of

convergence of the expansion of the function in terms of mR. As we will show in section 4,

most of our data are below this threshold. Using the Taylor expansion of modified Bessel

functions and the ζ-function regularization for the infinite sums, for 0 < mR < π one finds

Vext(R,m) = − π

24R
+
m

4
+
m2R

4π

[
ln

(
mR

2π

)
+ γE −

1

2

]
+
m2R

2π

∞∑
n=1

Γ
(

3
2

)
ζ(2n+ 1)

Γ(n+ 2)Γ
(
n− 1

2

) (mR
π

)2n

, (3.14)

where γE = 0.5772156649 . . . is the Euler-Mascheroni constant and ζ(x) denotes the Rie-

mann zeta function.

A few comments may be useful to better understand this result.

• As we mentioned above, Vext(R,m) can be interpreted as a massive perturbation of

the c = 1 free bosonic theory. In fact, the combination

c0(2mR) = −24R

π
Vext(R,m) (3.15)

coincides with the ground state scaling function introduced in ref. [50] to describe

this perturbation. As expected, c0(2mr) is a monotonically decreasing function of
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its argument, and interpolates between 1 for 2mR = 0 and 0 for 2mR→∞. In this

respect it is interesting to notice the analogy with the Nambu-Goto case: while the

Nambu-Goto model can be described as an irrelevant massless perturbation of the

c = 1 free bosonic conformal field theory (CFT) in two dimensions [51, 52], the rigid

string is described by a relevant massive perturbation of the same CFT.

• The presence of a massive degree of freedom on the worldsheet of the confining string

has been recently proposed as a way to explain the deviations from the expected

Nambu-Goto behavior observed in Monte Carlo simulations of SU(N) Yang-Mills

theories [53, 54]. Our results can be considered as an explicit realization of this

proposal in the 3D U(1) model.

• The expansion on the right-hand side of eq. (3.14) agrees with the result for the small-

R regime obtained by Braaten, Pisarski and Tse in the D →∞ limit in ref. [45]. This

shows that, in this regime, their result also holds for finite D.

• In the mR → 0 limit, the free bosonic theory is recovered: thus we find a second

“Lüscher” term, in addition to the one from VNG(R). As long as m is small (in par-

ticular for m < π
√
σ), we should thus expect a major effect of the extrinsic-curvature

term in the finite-size correction to the interquark potential. If m is proportional to

m0 as suggested by Polyakov, see eq. (2.9), then, due to eq. (2.4), the contribution

of the extrinsic curvature should become more and more important as β increases,

becoming dominant in the continuum limit.

In the large-R limit, Vext(R,m) decreases exponentially. Its behavior is dominated by the

lowest-index Bessel function appearing in the sum:

Vext(R,m) ' −
√

m

16πR
e−2mR for R� 1

m
. (3.16)

This is the typical behavior expected for a massive perturbation of a CFT in two dimen-

sions, and agrees with well-known results on how the extrinsic-curvature coupling for the

rigid string varies under renormalization-group transformations [43, 44]. As a consequence,

the contribution of Vext(R,m) becomes negligible in the infrared limit at fixed m (but it

can remain finite in the infrared limit if the latter is taken at fixed mR).

3.2 Higher-order corrections

The contribution to the interquark potential due to the boundary term in eq. (3.6) and to

the next-to-leading-order term in the Nambu-Goto action can be evaluated perturbatively,

taking into account both the contribution due to the Nambu-Goto action, and to the

extrinsic-curvature term in the Gaussian integration [46]. For the boundary term, the

extrinsic-curvature term leads to contributions beyond our resolution, hence we are left

with the standard free bosonic result derived in refs. [10, 39]. Its contribution to the

interquark potential in the large-Nt limit is

Vb = −b2
π3

60R4
. (3.17)
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For the next-to-leading-order contribution of the Nambu-Goto action, the situation is

slightly more complicated, and involves the usual Nambu-Goto correction, O(R−3), and an

additional, O(R−4) term, in principle detectable in our simulations. The former contribu-

tion reads [55]

V1 = −
( π

24

)2 1

2σR3
. (3.18)

On the other hand, the latter was computed in the large-D limit in ref. [45]:

V2 = −
(
πD

24

)2 3

20mσR4
, (3.19)

but its expression for generic D, evaluated later in ref. [46], turns out to be affected by

large finite-D corrections:

V ′2 = −(D − 2)(D − 10)
( π

24

)2 3

20mσR4
= V2 ·

(
1− 12

D
+

20

D2

)
. (3.20)

While it would be interesting to test this finite-D dependence numerically, unfortunately

our present numerical results do not allow us to disentangle this correction from the contri-

bution due to the boundary term, with the same 1/R4 dependence. However, this could be

possible in the future, with precise simulations on a wider range of lattice spacings, thanks

to the different scaling behavior of the two terms.

4 Numerical results

We carried out a set of simulations of the U(1) lattice model in its dual formulation,

combining a conventional Metropolis algorithm [56] with the snake algorithm [33] and with

hierarchical lattice updates [34]. The simulations were performed on cubic lattices of size

L2 × Nt ranging from L = Nt = 64a to L = Nt = 128a, for five values of the Wilson

lattice parameter from β = 1.7 to β = 2.4. These values were chosen in order to access a

sufficiently wide range of values for σ and m0. To avoid systematic finite-volume effects, we

always chose L in such a way that L > 10/
√
σ and L > 10/m0. Details on the simulation

settings are reported in table 1.

In our simulations we evaluated the ratio between two-point Polyakov-loop correlators

at distances differing by one lattice spacing,

Q(R) = − 1

Nt
ln
G(R+ a)

G(R)
(4.1)

where G(R) = 〈P ?(x)P (x + R)〉 and P (x) denotes the Polyakov loop at the space site x.

Note that, since Nt has the dimensions of a length, Q has energy dimension 1. Using the

numerical techniques discussed above, this quantity could be evaluated to high precision

for several values of β in the range 1/
√
σ < R < L/2.
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β σa2 m0a L/a = Nt/a

1.7 0.122764(2) 0.88(1) 64

1.9 0.066824(6) 0.56(1) 64

2.0 0.049364(2) 0.44(1) 64

2.2 0.027322(2) 0.27(1) 64

2.4 0.015456(7) 0.197(10) 128

Table 1. Information on the setup of our simulations.

4.1 Large deviations from the Nambu-Goto effective string predictions. . .

We first tried to fit our numerical results with the standard Nambu-Goto effective string

expectation, which for Q(R) is4

QNG(R) = σ

[√
(R+ a)2 − π

12σ
−
√
R2 − π

12σ

]
. (4.2)

We fitted Q(R) for R ranging from Rmin to R = L/2, using the string tension σ as the

only fitting parameter. We started from Rmin ' 1/
√
σ and increased Rmin until we reached

a value of the reduced χ2 close to 1. The best-fit values for σ obtained in this way are

reported in the second column of table 1. While for β < 2 a χ2
red of order one could be

reached after a few lattice spacings, for β ≥ 2 we had to choose larger and larger values

of Rmin. As an example, in the first three columns of table 2 we report the fit results in

the case of β = 2.2, where a χ2
red . 1 (and a corresponding plateau in the best-fit value

for σ) could only be reached for Rmin = 26a, which corresponds to Rmin

√
σ = 4.3. The

magnitude of these deviations can be appreciated looking at figure 2, where we plotted

the [Q(R)−QNG(R)] differences, using for QNG(R) the asymptotic values of σ reported in

table 1. These numbers can be compared with analogous fit results in the 3D Z2 gauge

theory [57]: in particular, our data for β = 2.2 and β = 2.4 can be compared with the data

reported in ref. [57] for the β = 0.75180 sample of the 3D Z2 gauge theory, for which we

had σa2 = 0.010532(4), L = 80a and a similar level of precision for the Q(R) values. In

the 3D Z2 gauge theory we could fit the data with the Lüscher correction alone, already

starting from R
√
σ = 1.8, and the difference between the data and the Lüscher correction

was almost completely accounted for by the 1/R3 term of the Nambu-Goto action, see

eq. (3.18). It was only by further improving the data precision and using sophisticated

simulation methods, that deviations from the Nambu-Goto predictions, beyond the 1/R3

order, could be observed in the 3D Z2 model [14, 15].

4.2 . . . that cannot be fitted by a boundary correction

Next, we tested if the deviations from the prediction of the Nambu-Goto action could be

fitted by a boundary correction of the type in eq. (3.17). To this end, following the notation

4Our fits were carried out using the NG expression to all orders in the 1/R expansion, as in eq. (4.2).

Within the precision of our data, fits obtained truncating the series to the O(R−3) term give completely

compatible results.
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used in refs. [10, 39], we fitted the [Q(R)−QNG(R)] differences to the boundary correction

Qb(R) = −b2π
3

60

[(
1

R+ a

)4

−
(

1

R

)4
]
. (4.3)

Note that b2 has energy dimension −3. We found, as in the case of the previous fits,

that reasonable χ2
red values could only be reached for very large values of Rmin. Even more

important, the best-fit values for b2 thus obtained did not show the expected scaling behav-

ior. When the fits to eq. (4.3) are carried out expressing all quantities in the appropriate

lattice units (i.e. using aQb instead of Qb, R/a instead of R, et c.), one extracts results

for the dimensionless ratio b2/a
3. If b2 is a physical (i.e. non-renormalized) quantity in

the continuum limit, then the b2/a
3 values obtained from the fit should scale as a−3, or,

equivalently, as (σa2)−3/2. Instead, we found that the values of (b2/a
3)/(σa2)−3/2 = b2σ

3/2

obtained from the fits range from b2σ
3/2 = 0.033(3) for β = 1.7, up to b2σ

3/2 = 0.62(6)

for β = 2.4. The fact that the b2 parameter increases as a function of β agrees with the

observation pointed out above, that the deviations from the Nambu-Goto action become

larger and larger as β increases.

As a complementary test, we also performed a two-parameter fit of the [Q(R)−QNG(R)]

differences to a correction term with a free exponent b,

Q′b(R) = k

[(
a

R+ a

)b
−
(
a

R

)b ]
, (4.4)

where k has energy dimension 1. At all lattice spacings, we found values of the exponent

ranging between 2 and 3, and thus incompatible with a boundary-type correction. More-

over, reasonable values of χ2
red could only be reached for very large values of Rmin, for which

the coefficient k was almost compatible with zero, within its uncertainties. As an example,

the results of these fits for β = 2.2 are shown in table 3.

4.3 Fit of the data with a rigid-string Ansatz

Much better fits were obtained by fitting the [Q(R) −QNG(R)] differences with the rigid-

string prediction, i.e. with

Qr(R) = −m
2π

∞∑
n=1

K1 (2nm(R+ a))−K1(2nmR)

n
, m =

√
σ

2α
. (4.5)

In practice, we truncated the sum over Bessel functions at n = 100 and verified that for all

values of R and β this gave differences well below the statistical uncertainties of our data.

Carrying out one-parameter fits with m as the only free parameter, we could success-

fully fit the data with much smaller values of Rmin, and the resulting values of m had the

expected scaling behavior, proportional to the glueball mass m0 (see table 4).

Since the m0/
√
σ ratio in the U(1) lattice model is not constant, but rather is expected

to scale according to eq. (2.4), this explains why these corrections become more and more

important as β increases.

– 14 –



J
H
E
P
0
1
(
2
0
1
5
)
1
0
5

Rmin

√
σ d.o.f. ak b χ2

red

0.99 25 −0.0394(9) 1.16(2) 73.27

1.16 24 −0.087(4) 1.6(3) 26.66

1.32 23 −0.17(1) 1.95(4) 12.84

1.49 22 −0.33(3) 2.24(5) 8.12

1.65 21 −0.63(9) 2.54(7) 5.39

1.82 20 −1.1(2) 2.78(9) 4.01

1.98 19 −2.5(7) 3.1(1) 2.91

2.15 18 −11(5) 3.7(2) 1.38

2.31 17 −17(11) 3.9(2) 1.36

2.48 16 −27(21) 4.0(3) 1.39

2.64 15 −60(80) 4.3(5) 1.42

Table 3. Results of the two-parameter fits of the [Q(R) − QNG(R)] differences at β = 2.2 to the

k ·
[
(1 +R/a)−b − (R/a)−b

]
functional form, defined in eq. (4.4).

β ma m0a m/m0

1.7 0.28(9) 0.88(1) 0.32(10)

1.9 0.25(4) 0.56(1) 0.45(7)

2.0 0.17(2) 0.44(1) 0.39(4)

2.2 0.11(1) 0.27(1) 0.41(4)

2.4 0.06(2) 0.20(1) 0.30(10)

Table 4. Best-fit results for m obtained using a three-parameter fit to our data, as explained in

the text.

Table 5 shows an example of our results for β = 2.2: a χ2
red of order one could be reached

already for Rmin

√
σ = 2.15, which is a remarkable improvement over the one-parameter fit

to the pure Nambu-Goto prediction. Our data for Q(R) at β = 2.2 are plotted in figure 1,

together with with the fit results.

In figure 2 we show, again for β = 2.2, the [Q(R)−QNG(R)] differences, together with

the best-fit results for the rigid-string correction with and without a boundary term. The

figure clearly reveals the magnitude of the deviations from the Nambu-Goto predictions.

4.4 Numerical evidence for terms O(R−4)

Next, we tested whether the next-to-leading-order correction V ′2 discussed in subsection 3.2

could be detected, within the precision of our data. To this end, we constructed the

combination

Q′r(R) = Qr(R) +
21

20mσ

( π
24

)2
[

1

(R+ a)4
− 1

R4

]
(4.6)
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Rmin

√
σ Vext Vext + V ′2 Vb

d.o.f. ma χ2
red ma χ2

red d.o.f. b2σ
3/2 χ2

red

0.99 26 0.2054(7) 340.17 0.1182(7) 462.7 25 0.0198(2) 14.21

1.16 25 0.1596(6) 113.36 0.0981(6) 90.47 24 0.0154(3) 4.95

1.32 24 0.1390(6) 38.56 0.0952(6) 15.64 23 0.0114(6) 2.46

1.49 23 0.1287(7) 15.32 0.0971(6) 3.34 22 0.0073(10) 1.32

1.65 22 0.1228(7) 6.78 0.0984(7) 1.76 21 0.005(1) 1.13

1.82 21 0.1194(8) 3.9 0.0990(7) 1.64 20 0.004(2) 1.17

1.98 20 0.1153(10) 2.07 0.0997(9) 1.62 19 0.004(3) 1.23

2.15 19 0.112(1) 1.03 0.100(1) 1.7 18 0.009(5) 1.17

2.31 18 0.112(1) 1.08 0.101(1) 1.31 17 − 1.05

2.48 17 0.112(2) 1.15 0.103(1) 1.24 16 − 1.05

2.64 16 0.112(2) 1.21 0.104(2) 1.25 15 − 1.11

2.81 15 0.111(2) 1.28 0.104(2) 1.34 14 − 1.18

2.98 14 0.112(3) 1.35 0.105(2) 1.36 13 − 1.24

3.14 13 0.112(3) 1.43 0.105(3) 1.44 12 − 1.25

3.31 12 0.113(3) 1.54 0.106(3) 1.54 11 − 1.36

3.47 11 0.117(5) 1.5 0.109(4) 1.47 10 − 1.4

3.64 10 0.110(5) 1.19 0.104(4) 1.18 9 − 0.81

3.8 9 0.111(6) 1.31 0.105(5) 1.31 8 − 0.89

3.97 8 0.115(9) 1.35 0.108(7) 1.33 7 − 0.97

4.13 7 0.113(10) 1.51 0.106(8) 1.49 6 − 0.97

4.3 6 0.14(4) 0.85 0.13(2) 0.82 5 − 0.52

4.46 5 − 0.89 0.15(10) 0.86 4 − 0.6

4.63 4 − 1.08 0.13(6) 1.06 3 − 0.66

4.79 3 − 1.02 − 0.91 2 − 0.35

4.96 2 − 1.52 − 1.36 1 − 0.25

Table 5. Fits of the [Q(R) − QNG(R)] differences for β = 2.2, with σ fixed to the value σa2 =

0.027322(2) determined for Rmin = 26a with a rigid-string Ansatz. In the third and fourth column

we report the results of the fit using only the Gaussian correction Qr(R), while in the fifth and

sixth columns we list the results obtained including the next-to-leading-order term, too, i.e. using

Q′r(R). In the last two columns we show the fit results for the [Q(R)−QNG(R)−Q′r(R)] differences

(with the fixed values σa2 = 0.027322(2) and ma = 0.099(2)) with a boundary correction Qb(R).

and used it to fit the [Q(R)−QNG(R)] differences, using m as the only free parameter. In

the fifth and sixth columns of table 5 we show an example of our results, in the β = 2.2

case. The χ2
red values exhibit significant improvement, particularly for 1 < Rmin

√
σ < 2,

even though they are still larger than 1. At the same time, one also finds a change in the

best-fit values for m, which is larger than our statistical uncertainties. We conclude that,

within the precision of our data, this term cannot be neglected.
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Since terms of order 1/R4 are non-negligible within the precision of our data, it is

important to take the possible presence of both a boundary and a rigid-string correction

in the data into account. To detect a possible boundary correction, we fixed the best-fit

values for σ and m obtained in the previous fits, and performed a one-parameter fit of the

[Q(R) − QNG − Q′r(R)] differences to the boundary correction Vb(R), with b2 as the only

free parameter. An example of our results for this type of fit (at β = 2.2) is reported in the

last two columns of table 5. We find much better values of χ2
red also for small Rmin

√
σ. χ2

red

values around one are reached already for Rmin

√
σ ∼ 1.65, with a small but non-vanishing

value of the rescaled b2σ
3/2 parameter: b2σ

3/2 = 0.005(1). This indicates that also this

term is non-negligible, and, at the level of precision of our results, should be taken into

account in the analysis.

4.5 Determination of the rigid-string parameter m

Looking at the Rmin dependence of the fits, it is possible to see that the rigid-string correc-

tion could also influence the determination of σ. In order to test the quantitative impact of

this possibility, in addition to the one-parameter fits of [Q(R)−QNG(R)] described above,

we decided to perform two-parameter fits of Q(R) to the functions QNG and Qr(R) (or

Q′r(R)) using both σ and m as free parameters. The results of these fits, again in the

β = 2.2 case, are reported in table 2 (first using Qr(R) and then using Q′r(R)). We see that

σ has a sizeable effect on the value of m and on its statistical uncertainty and that, also

in this case, including the next-to-leading-order correction of the rigid string changes the

best-fit results for m.

Based on this analysis, we conclude that both the value of σ and that of b2 may

influence our estimate of m. To take this systematic ambiguity into account, we decided to

use as our best-fit estimates for m the results of a three-parameter fit to the data, with σ,

m and b2 as free parameters. The drawback of this choice is that the resulting values of m

are affected by rather large uncertainties (reflecting our ignorance on the actual values of σ

and b2). It is likely that this uncertainty will decrease as other observables are included in

the analysis, like Wilson loops or high-temperature correlators of Polyakov loops. We plan

to address this issue in future work. We report these estimates for m in table 4. In the last

column we report the m/m0 ratio, which, as anticipated, shows good scaling behavior.

Taking both statistical and systematic uncertainties (including scaling violations) of

the above values into account, we quote the value

m

m0
= 0.35(10) (4.7)

as our tentative estimate for the rigid-string parameter.

5 Concluding remarks

The results of our lattice simulations show that in the 3D U(1) model, as β increases

towards the continuum limit, the interquark potential shows strong deviations from the

expectations of a Nambu-Goto effective string model. These deviations are described well
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Figure 1. Numerical data (at β = 2.2) and best-fit curves for the functional forms corresponding

to QNG, QNG+ Lüscher,Vext, and Vext + V ′2 , as defined in the text. The last two are two-parameter

(σ and m) fits.

Figure 2. Fits of the [Q − QNG(R)] differences at β = 2.2, with Vext, Vext + V ′2 and Vext + V ′2+

boundary term.

by the one-loop contribution of an extrinsic-curvature term in the effective string action.

Polyakov’s derivation of the effective string description for the U(1) model suggests to relate

the parameter m, which controls the rigid-string contribution, to the mass of the lightest

glueball m0. Since in the U(1) model the ratio m0/
√
σ decreases exponentially with β, we

expect the continuum limit of the model to be dominated by rigid-string behavior, which

is very different from the Nambu-Goto one. In this sense, it is really “a different kind of

string”, as anticipated in the title of the present article. Thus, the 3D U(1) lattice model

turns out to be a perfect laboratory to study the cross-over from a purely Nambu-Goto

string at low β to a purely rigid string at large β.
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The main differences between the two types of strings, which could be used to identify

their behavior, can be summarized as follows.

• The field density profile around the string is (almost) a Gaussian in the case of a

Nambu-Goto string, while it decreases exponentially for the rigid string. This expo-

nential defines a new scale, known as the London penetration length in condensed

matter theory, and sometimes denoted as intrinsic width in confining gauge theo-

ries [58–60].

• While in the Nambu-Goto case the string width increases logarithmically with the

interquark distance at zero temperature [61] and linearly at high temperature [62],

the intrinsic width of the rigid string is constant [59, 60].

• At very short distances the coefficient of the Lüscher term is doubled.

Our findings may have important implications also for other confining theories, in-

cluding some of interest for elementary particle physics (like the SU(3) theory in four

spacetime dimensions) or for condensed matter physics (like the 3D Ising model). In com-

paring the 3D U(1) model with other confining theories, one should consider two features:

the scaling behavior of the m0/
√
σ ratio and the presence of a contribution due to the

extrinsic-curvature term in the interquark potential. As discussed at the end of section 2,

the relative weight of the Nambu-Goto and extrinsic-curvature terms in the effective string

description depends on the m0/
√
σ ratio, and its non-trivial dependence on the lattice spac-

ing makes the rigidity term dominant in the continuum limit of the 3D U(1) model. Such

behavior, however, appears to be non-generic: for example, in non-Abelian lattice gauge

theories typically m0/
√
σ remains constant when the lattice spacing tends to zero (up to

small discretization artifacts). As a consequence, rigid-string effects may be present in the

infrared regime of SU(N) gauge theories — and could perhaps explain some fine deviations

from the Nambu-Goto string, that have been observed in recent simulations [13–15], as

well as the London penetration term in the string width [63, 64]—but there is no reason

to expect them to be dominant.

Thinking about connections between the model discussed in the present work and other

theories, an interesting 3D model, in which the Kramers-Wannier duality transformation

that we used here can be applied in the presence of matter, is the Z2 gauge-Higgs model:

for a discussion, see ref. [65] and references therein.

Finally, it is interesting to note the analogy of our results with those obtained in the

past in Abelian Higgs models in four spacetime dimensions. Also in that case, in a certain

limit (the so-called “London limit”), a suitable duality transformation allows one to derive

a description in terms of an effective bosonic string model, whose action includes a Nambu-

Goto term and a rigidity term, as discussed in refs. [66–71]. These works present a nice

realization of the dual superconductor scenario, which was proposed forty years ago by

’t Hooft [72] and by Mandelstam [73]. More recently, a similar approach has also been

investigated in non-Abelian models: for a review, see ref. [74]. These works are part of the

research efforts to derive an analytical understanding of confinement in non-Abelian gauge

theories, in terms of objects that can be studied semi-classically, for which there has been
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significant progress in the past few years [75–77]. The main difference between our model

and the situation in Abelian Higgs models is that, as we mentioned above, in our case the

continuum limit is dominated by the rigidity term, while, a priori, there is no reason to

expect a similar behavior in the Abelian Higgs models. Studying the relative weight of

and the interplay between the string tension and the coefficient of the extrinsic curvature

term in Abelian Higgs models in four spacetime dimensions would be a very interesting

task, but one which clearly lies beyond the scope of the present article, hence we leave its

numerical investigation for the future.
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A Reabsorbing the rigidity term into the Gaussian term

At the Gaussian level, the effective string action, including the rigidity term, is given by

eq. (3.7), which can be rewritten as

S = σ

∫ Nt

0
dt

∫ R

0
dr

[
1 +

1

2
X

(
1− 2α

σ
∆

)
(−∆)X

]
(A.1)

by integrating by parts and regrouping like terms.

At leading order (in an expansion in α/σ), the rigidity term can be reabsorbed by a

field redefinition: setting

X ′ (ξ0, ξ1) =

(
1− 2α

σ
∆

)1/2

X(ξ0, ξ1) (A.2)

one gets

∂αX
′∂αX ′ = ∂α

[(
1− 2α

σ
∆

)1/2

X

]
∂α
[(

1− 2α

σ
∆

)1/2

X

]
= ∂αX∂

αX − α

σ
∂αX∆∂αX − α

σ
∆∂αX∂

αX +O
(

(α/σ)2
)

= ∂αX∂
αX +

α

σ
(∆X)2 +O

(
(α/σ)2

)
. (A.3)

The change on the functional measure induced by the field redefinition in eq. (A.2) can be

worked out as follows. Let λab and Φab denote the eigenvalues and eigenfunctions of the

∆ operator:

∆Φab = −λabΦab. (A.4)
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Then, the Φab’s are also eigenfunctions of the
(
1− α

σ∆
)1/2

operator:(
1− 2α

σ
∆

)1/2

Φcd = ωcdΦcd =

(
1 +

2α

σ
λcd

)1/2

Φcd. (A.5)

Expanding X and X ′ in a basis of eigenfunctions of ∆, eq. (A.2) implies that

X(ξ0, ξ1) =
∑
a,b

xabΦab(ξ0, ξ1), (A.6)

X ′(ξ0, ξ1) =
∑
c,d

x′cdΦcd(ξ0, ξ1) =
∑
cd

xcd

(
1 +

2α

σ
λcd

)1/2

Φcd. (A.7)

As a consequence,

[DX] =
∏
ab

dxab =
∏
cd

1(
1 + 2α

σ λcd
)1/2 ∏

ab

dxab

(
1 +

2α

σ
λab

)1/2

=

[
det

(
1− 2α

σ
∆

)1/2
]−1

R,Nt

[DX ′], (A.8)

which implies

∫
[DX] exp(−S) =

∫
[DX ′] exp

{
−σ
∫ Nt

0 dt
∫ R

0 dr
[
1 + 1

2∂αX
′ · ∂αX ′

]}[
det
(
1− 2α

σ ∆
)1/2]

R,Nt

. (A.9)

Using this result in eq. (3.8), one obtains

V (R,Nt) = σR+
1

2Nt
Tr

[
ln

(
1− 2α

σ
∆

)
R,Nt

]
+

1

2Nt
Tr [ln (−∆)R,Nt ] , (A.10)

which is the desired result.
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