5 research outputs found

    Biomechanics applied to computer-aided diagnosis: examples of orbital and maxillofacial surgeries

    Get PDF
    This paper introduces the methodology proposed by our group to model the biological soft tissues deformations and to couple these models with Computer-Assisted Surgical (CAS) applications. After designing CAS protocols that mainly focused on bony structures, the Computer Aided Medical Imaging group of Laboratory TIMC (CNRS, France) now tries to take into account the behaviour of soft tissues in the CAS context. For this, a methodology, originally published under the name of the Mesh-Matching method, has been proposed to elaborate patient specific models. Starting from an elaborate manually-built "generic" Finite Element (FE) model of a given anatomical structure, models adapted to the geometries of each new patient ("patient specific" FE models) are automatically generated through a non-linear elastic registration algorithm. This paper presents the general methodology of the Mesh-Matching method and illustrates this process with two clinical applications, namely the orbital and the maxillofacial computer-assisted surgeries

    Management of bone defects with Bio-oss

    Get PDF
    Introduction: The defects in the alveolar bone might appear as a result of congenital malformations, traumatic injuries, periodontal disease, surgical traumas, chronic periapical changes and tumors from benign or malignant origin. The aim of this study was to provide solid and healthy area with application of Bio-Oss in the defect. Materials and methods: Based on the clinical diagnosisestablished by previously taken history, clinical examination and radiographic images oral-surgery interventions was made. To realize the aim of this work, augmentative material was implicated in the bone defects made in the patients after removal of follicular cyst, chronic periapical lesion, and parodontopathia. During the first and seventh day of the interventions, the patients have been followed through from aspect of possible development of local and general complications after the oral-surgery intervention. After period of one, three and six mount control x-ray was made. Results: Obtained results confirmed that: volume of the socket and defect of the bone was kept, fast revascularization was achieved, bone formation and slow resorption of the augmentative material was achieved, and period of normal healing without infection was also achieved. Conclusions: The augmentative materials used for treatment of bone defects besides their basic chemical and physical characteristics referring to their solubility in the body fluids, the transformation, modulation and resorption must be completely safe or secure, i.e. not to bring any risk of infection, immunological risk, physiological intolerance or inhibition of the process of restitutio ad integrum. In our study Bio-Oss was confirmed as augmentative material who had this characteristics. Keywords: bone defect, resorption of the bone, augmentative material, Bio-Os

    A finite element study of the influence of the osteotomy surface on the backward displacement during exophthalmia reduction

    No full text
    Exophthalmia is characterized by a protrusion of the eyeball. The most frequent surgery consists in an osteotomy of the orbit walls to increase the orbital volume and to retrieve a normal eye position. Only a few clinical obser-vations have estimated the relationship between the eyeball backward dis-placement and the decompressed fat tissue volume. This paper presents a method to determine the relationship between the eyeball backward displace-ment and the osteotomy surface made by the surgeon, in order to improve ex-ophthalmia reduction planning. A poroelastic finite element model involving morphology, material properties of orbital components, and surgical gesture is proposed to perform this study on 12 patients. As a result, the osteotomy sur-face seems to have a non-linear influence on the backward displacement. More-over, the FE model permits to give a first estimation of an average law linking those two parameters. This law may be helpful in a surgical planning frame-work
    corecore