14,468 research outputs found

    HD-Index: Pushing the Scalability-Accuracy Boundary for Approximate kNN Search in High-Dimensional Spaces

    Full text link
    Nearest neighbor searching of large databases in high-dimensional spaces is inherently difficult due to the curse of dimensionality. A flavor of approximation is, therefore, necessary to practically solve the problem of nearest neighbor search. In this paper, we propose a novel yet simple indexing scheme, HD-Index, to solve the problem of approximate k-nearest neighbor queries in massive high-dimensional databases. HD-Index consists of a set of novel hierarchical structures called RDB-trees built on Hilbert keys of database objects. The leaves of the RDB-trees store distances of database objects to reference objects, thereby allowing efficient pruning using distance filters. In addition to triangular inequality, we also use Ptolemaic inequality to produce better lower bounds. Experiments on massive (up to billion scale) high-dimensional (up to 1000+) datasets show that HD-Index is effective, efficient, and scalable.Comment: PVLDB 11(8):906-919, 201

    A fast algorithm for detecting gene-gene interactions in genome-wide association studies

    Full text link
    With the recent advent of high-throughput genotyping techniques, genetic data for genome-wide association studies (GWAS) have become increasingly available, which entails the development of efficient and effective statistical approaches. Although many such approaches have been developed and used to identify single-nucleotide polymorphisms (SNPs) that are associated with complex traits or diseases, few are able to detect gene-gene interactions among different SNPs. Genetic interactions, also known as epistasis, have been recognized to play a pivotal role in contributing to the genetic variation of phenotypic traits. However, because of an extremely large number of SNP-SNP combinations in GWAS, the model dimensionality can quickly become so overwhelming that no prevailing variable selection methods are capable of handling this problem. In this paper, we present a statistical framework for characterizing main genetic effects and epistatic interactions in a GWAS study. Specifically, we first propose a two-stage sure independence screening (TS-SIS) procedure and generate a pool of candidate SNPs and interactions, which serve as predictors to explain and predict the phenotypes of a complex trait. We also propose a rates adjusted thresholding estimation (RATE) approach to determine the size of the reduced model selected by an independence screening. Regularization regression methods, such as LASSO or SCAD, are then applied to further identify important genetic effects. Simulation studies show that the TS-SIS procedure is computationally efficient and has an outstanding finite sample performance in selecting potential SNPs as well as gene-gene interactions. We apply the proposed framework to analyze an ultrahigh-dimensional GWAS data set from the Framingham Heart Study, and select 23 active SNPs and 24 active epistatic interactions for the body mass index variation. It shows the capability of our procedure to resolve the complexity of genetic control.Comment: Published in at http://dx.doi.org/10.1214/14-AOAS771 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    An investigation into machine learning approaches for forecasting spatio-temporal demand in ride-hailing service

    Full text link
    In this paper, we present machine learning approaches for characterizing and forecasting the short-term demand for on-demand ride-hailing services. We propose the spatio-temporal estimation of the demand that is a function of variable effects related to traffic, pricing and weather conditions. With respect to the methodology, a single decision tree, bootstrap-aggregated (bagged) decision trees, random forest, boosted decision trees, and artificial neural network for regression have been adapted and systematically compared using various statistics, e.g. R-square, Root Mean Square Error (RMSE), and slope. To better assess the quality of the models, they have been tested on a real case study using the data of DiDi Chuxing, the main on-demand ride hailing service provider in China. In the current study, 199,584 time-slots describing the spatio-temporal ride-hailing demand has been extracted with an aggregated-time interval of 10 mins. All the methods are trained and validated on the basis of two independent samples from this dataset. The results revealed that boosted decision trees provide the best prediction accuracy (RMSE=16.41), while avoiding the risk of over-fitting, followed by artificial neural network (20.09), random forest (23.50), bagged decision trees (24.29) and single decision tree (33.55).Comment: Currently under review for journal publicatio

    Evolving Ensemble Fuzzy Classifier

    Full text link
    The concept of ensemble learning offers a promising avenue in learning from data streams under complex environments because it addresses the bias and variance dilemma better than its single model counterpart and features a reconfigurable structure, which is well suited to the given context. While various extensions of ensemble learning for mining non-stationary data streams can be found in the literature, most of them are crafted under a static base classifier and revisits preceding samples in the sliding window for a retraining step. This feature causes computationally prohibitive complexity and is not flexible enough to cope with rapidly changing environments. Their complexities are often demanding because it involves a large collection of offline classifiers due to the absence of structural complexities reduction mechanisms and lack of an online feature selection mechanism. A novel evolving ensemble classifier, namely Parsimonious Ensemble pENsemble, is proposed in this paper. pENsemble differs from existing architectures in the fact that it is built upon an evolving classifier from data streams, termed Parsimonious Classifier pClass. pENsemble is equipped by an ensemble pruning mechanism, which estimates a localized generalization error of a base classifier. A dynamic online feature selection scenario is integrated into the pENsemble. This method allows for dynamic selection and deselection of input features on the fly. pENsemble adopts a dynamic ensemble structure to output a final classification decision where it features a novel drift detection scenario to grow the ensemble structure. The efficacy of the pENsemble has been numerically demonstrated through rigorous numerical studies with dynamic and evolving data streams where it delivers the most encouraging performance in attaining a tradeoff between accuracy and complexity.Comment: this paper has been published by IEEE Transactions on Fuzzy System

    Automated design of robust discriminant analysis classifier for foot pressure lesions using kinematic data

    Get PDF
    In the recent years, the use of motion tracking systems for acquisition of functional biomechanical gait data, has received increasing interest due to the richness and accuracy of the measured kinematic information. However, costs frequently restrict the number of subjects employed, and this makes the dimensionality of the collected data far higher than the available samples. This paper applies discriminant analysis algorithms to the classification of patients with different types of foot lesions, in order to establish an association between foot motion and lesion formation. With primary attention to small sample size situations, we compare different types of Bayesian classifiers and evaluate their performance with various dimensionality reduction techniques for feature extraction, as well as search methods for selection of raw kinematic variables. Finally, we propose a novel integrated method which fine-tunes the classifier parameters and selects the most relevant kinematic variables simultaneously. Performance comparisons are using robust resampling techniques such as Bootstrap632+632+and k-fold cross-validation. Results from experimentations with lesion subjects suffering from pathological plantar hyperkeratosis, show that the proposed method can lead tosim96sim 96%correct classification rates with less than 10% of the original features

    Streaming Feature Grouping and Selection (Sfgs) For Big Data Classification

    Get PDF
    Real-time data has always been an essential element for organizations when the quickness of data delivery is critical to their businesses. Today, organizations understand the importance of real-time data analysis to maintain benefits from their generated data. Real-time data analysis is also known as real-time analytics, streaming analytics, real-time streaming analytics, and event processing. Stream processing is the key to getting results in real-time. It allows us to process the data stream in real-time as it arrives. The concept of streaming data means the data are generated dynamically, and the full stream is unknown or even infinite. This data becomes massive and diverse and forms what is known as a big data challenge. In machine learning, streaming feature selection has always been a preferred method in the preprocessing of streaming data. Recently, feature grouping, which can measure the hidden information between selected features, has begun gaining attention. This dissertation’s main contribution is in solving the issue of the extremely high dimensionality of streaming big data by delivering a streaming feature grouping and selection algorithm. Also, the literature review presents a comprehensive review of the current streaming feature selection approaches and highlights the state-of-the-art algorithms trending in this area. The proposed algorithm is designed with the idea of grouping together similar features to reduce redundancy and handle the stream of features in an online fashion. This algorithm has been implemented and evaluated using benchmark datasets against state-of-the-art streaming feature selection algorithms and feature grouping techniques. The results showed better performance regarding prediction accuracy than with state-of-the-art algorithms
    corecore