51 research outputs found

    Explicit Correlation Amplifiers for Finding Outlier Correlations in Deterministic Subquadratic Time

    Get PDF
    We derandomize G. Valiant\u27s [J.ACM 62(2015) Art.13] subquadratic-time algorithm for finding outlier correlations in binary data. Our derandomized algorithm gives deterministic subquadratic scaling essentially for the same parameter range as Valiant\u27s randomized algorithm, but the precise constants we save over quadratic scaling are more modest. Our main technical tool for derandomization is an explicit family of correlation amplifiers built via a family of zigzag-product expanders in Reingold, Vadhan, and Wigderson [Ann. of Math 155(2002), 157-187]. We say that a function f:{-1,1}^d ->{-1,1}^D is a correlation amplifier with threshold 0 = 1, and strength p an even positive integer if for all pairs of vectors x,y in {-1,1}^d it holds that (i) ||| | >= tau*d implies (/gamma^d})^p*D /d)^p*D

    Distributed PCP Theorems for Hardness of Approximation in P

    Get PDF
    We present a new distributed model of probabilistically checkable proofs (PCP). A satisfying assignment x{0,1}nx \in \{0,1\}^n to a CNF formula φ\varphi is shared between two parties, where Alice knows x1,,xn/2x_1, \dots, x_{n/2}, Bob knows xn/2+1,,xnx_{n/2+1},\dots,x_n, and both parties know φ\varphi. The goal is to have Alice and Bob jointly write a PCP that xx satisfies φ\varphi, while exchanging little or no information. Unfortunately, this model as-is does not allow for nontrivial query complexity. Instead, we focus on a non-deterministic variant, where the players are helped by Merlin, a third party who knows all of xx. Using our framework, we obtain, for the first time, PCP-like reductions from the Strong Exponential Time Hypothesis (SETH) to approximation problems in P. In particular, under SETH we show that there are no truly-subquadratic approximation algorithms for Bichromatic Maximum Inner Product over {0,1}-vectors, Bichromatic LCS Closest Pair over permutations, Approximate Regular Expression Matching, and Diameter in Product Metric. All our inapproximability factors are nearly-tight. In particular, for the first two problems we obtain nearly-polynomial factors of 2(logn)1o(1)2^{(\log n)^{1-o(1)}}; only (1+o(1))(1+o(1))-factor lower bounds (under SETH) were known before

    A New Study of Applying Complexity Theoretical Tools in Algorithm Design

    Get PDF
    Given n vectors with dimension m in Boolean domain, how to find two vectors whose pairwise Hamming distance is minimum? This problem is known as the Closest Pair Problem. If these vectors are generated uniformly at random except two of them are correlated with Pearson-correlation coefficient, then the problem is called the Light Bulb Problem. In this work, we propose a novel coding-based scheme for the Closest Pair Problem. We design both randomized and deterministic algorithms, which achieve the best-known running time when the length of input vectors m is small and the minimum distance is very small compared to m. When applied to the Light Bulb Problem, our result yields state-of-the-art deterministic running time when the Pearson-correlation coefficient is very large. Specifically, when it is greater than 0.9933, our deterministic algorithm runs faster than the previously best deterministic algorithm (Alman, SOSA 2019)

    Fast Sketch-based Recovery of Correlation Outliers

    Get PDF
    Many data sources can be interpreted as time-series, and a key problem is to identify which pairs out of a large collection of signals are highly correlated. We expect that there will be few, large, interesting correlations, while most signal pairs do not have any strong correlation. We abstract this as the problem of identifying the highly correlated pairs in a collection of n mostly pairwise uncorrelated random variables, where observations of the variables arrives as a stream. Dimensionality reduction can remove dependence on the number of observations, but further techniques are required to tame the quadratic (in n) cost of a search through all possible pairs. We develop a new algorithm for rapidly finding large correlations based on sketch techniques with an added twist: we quickly generate sketches of random combinations of signals, and use these in concert with ideas from coding theory to decode the identity of correlated pairs. We prove correctness and compare performance and effectiveness with the best LSH (locality sensitive hashing) based approach

    Counting Short Vector Pairs by Inner Product and Relations to the Permanent

    Get PDF

    Finding Skewed Subcubes Under a Distribution

    Get PDF
    Say that we are given samples from a distribution ? over an n-dimensional space. We expect or desire ? to behave like a product distribution (or a k-wise independent distribution over its marginals for small k). We propose the problem of enumerating/list-decoding all large subcubes where the distribution ? deviates markedly from what we expect; we refer to such subcubes as skewed subcubes. Skewed subcubes are certificates of dependencies between small subsets of variables in ?. We motivate this problem by showing that it arises naturally in the context of algorithmic fairness and anomaly detection. In this work we focus on the special but important case where the space is the Boolean hypercube, and the expected marginals are uniform. We show that the obvious definition of skewed subcubes can lead to intractable list sizes, and propose a better definition of a minimal skewed subcube, which are subcubes whose skew cannot be attributed to a larger subcube that contains it. Our main technical contribution is a list-size bound for this definition and an algorithm to efficiently find all such subcubes. Both the bound and the algorithm rely on Fourier-analytic techniques, especially the powerful hypercontractive inequality. On the lower bounds side, we show that finding skewed subcubes is as hard as the sparse noisy parity problem, and hence our algorithms cannot be improved on substantially without a breakthrough on this problem which is believed to be intractable. Motivated by this, we study alternate models allowing query access to ? where finding skewed subcubes might be easier
    corecore