4 research outputs found

    Effective Edge-Fault-Tolerant Single-Source Spanners via Best (or Good) Swap Edges

    Full text link
    Computing \emph{all best swap edges} (ABSE) of a spanning tree TT of a given nn-vertex and mm-edge undirected and weighted graph GG means to select, for each edge ee of TT, a corresponding non-tree edge ff, in such a way that the tree obtained by replacing ee with ff enjoys some optimality criterion (which is naturally defined according to some objective function originally addressed by TT). Solving efficiently an ABSE problem is by now a classic algorithmic issue, since it conveys a very successful way of coping with a (transient) \emph{edge failure} in tree-based communication networks: just replace the failing edge with its respective swap edge, so as that the connectivity is promptly reestablished by minimizing the rerouting and set-up costs. In this paper, we solve the ABSE problem for the case in which TT is a \emph{single-source shortest-path tree} of GG, and our two selected swap criteria aim to minimize either the \emph{maximum} or the \emph{average stretch} in the swap tree of all the paths emanating from the source. Having these criteria in mind, the obtained structures can then be reviewed as \emph{edge-fault-tolerant single-source spanners}. For them, we propose two efficient algorithms running in O(mn+n2log⁥n)O(m n +n^2 \log n) and O(mnlog⁥ι(m,n))O(m n \log \alpha(m,n)) time, respectively, and we show that the guaranteed (either maximum or average, respectively) stretch factor is equal to 3, and this is tight. Moreover, for the maximum stretch, we also propose an almost linear O(mlog⁥ι(m,n))O(m \log \alpha(m,n)) time algorithm computing a set of \emph{good} swap edges, each of which will guarantee a relative approximation factor on the maximum stretch of 3/23/2 (tight) as opposed to that provided by the corresponding BSE. Surprisingly, no previous results were known for these two very natural swap problems.Comment: 15 pages, 4 figures, SIROCCO 201

    A Faster computation of all the best swap edges of a shortest paths tree

    No full text
    We consider a 2-edge connected, non-negatively weighted graph G, with n nodes and m edges, and a single-source shortest paths tree (SPT) of G rooted at an arbitrary node. If an edge of the SPT is temporarily removed, a widely recognized approach to reconnect the nodes disconnected from the root consists of joining the two resulting subtrees by means of a single non-tree edge, called a swap edge. This allows to reduce consistently the set-up and computational costs which are incurred if we instead rebuild a new optimal SPT from scratch. In the past, several optimality criteria have been considered to select a best possible swap edge, and here we restrict our attention to arguably the two most significant measures: the minimization of either the maximum or the average distance between the root and the disconnected nodes. For the former criteria, we present an O(m logα(m,n)) time algorithm to find a best swap edge for every edge of the SPT, thus improving onto the previous O(m logn) time algorithm (B. Gfeller, ESA’08). Concerning the latter criteria, we provide an O(m + n logn) time algorithm for the special but important case where G is unweighted, which compares favorably with the O(m+nα(n,n)log2 n) time bound that one would get by using the fastest algorithm known for the weighted case – once this is suitably adapted to the unweighted case

    29th International Symposium on Algorithms and Computation: ISAAC 2018, December 16-19, 2018, Jiaoxi, Yilan, Taiwan

    Get PDF
    corecore