10 research outputs found

    Cube-Cut: Vertebral Body Segmentation in MRI-Data through Cubic-Shaped Divergences

    Full text link
    In this article, we present a graph-based method using a cubic template for volumetric segmentation of vertebrae in magnetic resonance imaging (MRI) acquisitions. The user can define the degree of deviation from a regular cube via a smoothness value Delta. The Cube-Cut algorithm generates a directed graph with two terminal nodes (s-t-network), where the nodes of the graph correspond to a cubic-shaped subset of the image's voxels. The weightings of the graph's terminal edges, which connect every node with a virtual source s or a virtual sink t, represent the affinity of a voxel to the vertebra (source) and to the background (sink). Furthermore, a set of infinite weighted and non-terminal edges implements the smoothness term. After graph construction, a minimal s-t-cut is calculated within polynomial computation time, which splits the nodes into two disjoint units. Subsequently, the segmentation result is determined out of the source-set. A quantitative evaluation of a C++ implementation of the algorithm resulted in an average Dice Similarity Coefficient (DSC) of 81.33% and a running time of less than a minute.Comment: 23 figures, 2 tables, 43 references, PLoS ONE 9(4): e9338

    Square-Cut: A Segmentation Algorithm on the Basis of a Rectangle Shape

    Get PDF
    We present a rectangle-based segmentation algorithm that sets up a graph and performs a graph cut to separate an object from the background. However, graph-based algorithms distribute the graph's nodes uniformly and equidistantly on the image. Then, a smoothness term is added to force the cut to prefer a particular shape. This strategy does not allow the cut to prefer a certain structure, especially when areas of the object are indistinguishable from the background. We solve this problem by referring to a rectangle shape of the object when sampling the graph nodes, i.e., the nodes are distributed nonuniformly and non-equidistantly on the image. This strategy can be useful, when areas of the object are indistinguishable from the background. For evaluation, we focus on vertebrae images from Magnetic Resonance Imaging (MRI) datasets to support the time consuming manual slice-by-slice segmentation performed by physicians. The ground truth of the vertebrae boundaries were manually extracted by two clinical experts (neurological surgeons) with several years of experience in spine surgery and afterwards compared with the automatic segmentation results of the proposed scheme yielding an average Dice Similarity Coefficient (DSC) of 90.97\pm62.2%.Comment: 13 pages, 17 figures, 2 tables, 3 equations, 42 reference

    Intraoperative Visualisierung multimodaler Daten in der Neurochirurgie

    Get PDF
    Die Neurochirurgie als medizinisches Fachgebiet befasst sich mit der Erkennung und der (operativen) Behandlung von Pathologien des zentralen und peripheren Nervensystems. Dazu gehören unter anderem die operative Entfernung (Resektion) von Gehirntumoren und das Einsetzen von Neurostimulatoren bei Parkinson-patienten. In dieser Arbeit werden Beiträge zur computergestützten Behandlung von zerebralen Erkrankungen – Tumoren, Aneurysmen und Bewegungsstörungen – geleistet. Bei operativen Eingriffen zur Behandlung dieser zerebralen Erkrankungen muss eine exakte Planung vor der Operation erfolgen. Für die Volumen-bestimmung von zerebralen Erkrankungen wurde im Rahmen dieser Arbeit ein graphbasierter Segmentierungsalgorithmus für kugelförmige und elliptische Objekte entwickelt. Außerdem ist ein effizienter geometrischer Ansatz für die präoperative Planung von Zugangswegen bei der tiefen Hirnstimulation ausgearbeitet worden. Weiterhin wurde der Workflow zur multimodalen Integration von Stoffwechselvorgängen – erzeugt mit Hilfe der 3 Tesla Protonen MR-Spektroskopie (1H-MRS) – in ein neurochirurgisches Navigationssystem realisiert. Alle Verfahren werden in der vorliegenden Arbeit im Detail vorgestellt und anhand von Patientendaten evaluiert. Außerdem werden die klinischen Prototypen präsentiert, die auf den Verfahren aufbauen

    Segmentierung medizinischer Bilddaten und bildgestĂĽtzte intraoperative Navigation

    Get PDF
    Die Entwicklung von Algorithmen zur automatischen oder semi-automatischen Verarbeitung von medizinischen Bilddaten hat in den letzten Jahren mehr und mehr an Bedeutung gewonnen. Das liegt zum einen an den immer besser werdenden medizinischen Aufnahmemodalitäten, die den menschlichen Körper immer feiner virtuell abbilden können. Zum anderen liegt dies an der verbesserten Computerhardware, die eine algorithmische Verarbeitung der teilweise im Gigabyte-Bereich liegenden Datenmengen in einer vernünftigen Zeit erlaubt. Das Ziel dieser Habilitationsschrift ist die Entwicklung und Evaluation von Algorithmen für die medizinische Bildverarbeitung. Insgesamt besteht die Habilitationsschrift aus einer Reihe von Publikationen, die in drei übergreifende Themenbereiche gegliedert sind: -Segmentierung medizinischer Bilddaten anhand von vorlagenbasierten Algorithmen -Experimentelle Evaluation quelloffener Segmentierungsmethoden unter medizinischen Einsatzbedingungen -Navigation zur Unterstützung intraoperativer Therapien Im Bereich Segmentierung medizinischer Bilddaten anhand von vorlagenbasierten Algorithmen wurden verschiedene graphbasierte Algorithmen in 2D und 3D entwickelt, die einen gerichteten Graphen mittels einer Vorlage aufbauen. Dazu gehört die Bildung eines Algorithmus zur Segmentierung von Wirbeln in 2D und 3D. In 2D wird eine rechteckige und in 3D eine würfelförmige Vorlage genutzt, um den Graphen aufzubauen und das Segmentierungsergebnis zu berechnen. Außerdem wird eine graphbasierte Segmentierung von Prostatadrüsen durch eine Kugelvorlage zur automatischen Bestimmung der Grenzen zwischen Prostatadrüsen und umliegenden Organen vorgestellt. Auf den vorlagenbasierten Algorithmen aufbauend, wurde ein interaktiver Segmentierungsalgorithmus, der einem Benutzer in Echtzeit das Segmentierungsergebnis anzeigt, konzipiert und implementiert. Der Algorithmus nutzt zur Segmentierung die verschiedenen Vorlagen, benötigt allerdings nur einen Saatpunkt des Benutzers. In einem weiteren Ansatz kann der Benutzer die Segmentierung interaktiv durch zusätzliche Saatpunkte verfeinern. Dadurch wird es möglich, eine semi-automatische Segmentierung auch in schwierigen Fällen zu einem zufriedenstellenden Ergebnis zu führen. Im Bereich Evaluation quelloffener Segmentierungsmethoden unter medizinischen Einsatzbedingungen wurden verschiedene frei verfügbare Segmentierungsalgorithmen anhand von Patientendaten aus der klinischen Routine getestet. Dazu gehörte die Evaluierung der semi-automatischen Segmentierung von Hirntumoren, zum Beispiel Hypophysenadenomen und Glioblastomen, mit der frei verfügbaren Open Source-Plattform 3D Slicer. Dadurch konnte gezeigt werden, wie eine rein manuelle Schicht-für-Schicht-Vermessung des Tumorvolumens in der Praxis unterstützt und beschleunigt werden kann. Weiterhin wurde die Segmentierung von Sprachbahnen in medizinischen Aufnahmen von Hirntumorpatienten auf verschiedenen Plattformen evaluiert. Im Bereich Navigation zur Unterstützung intraoperativer Therapien wurden Softwaremodule zum Begleiten von intra-operativen Eingriffen in verschiedenen Phasen einer Behandlung (Therapieplanung, Durchführung, Kontrolle) entwickelt. Dazu gehört die erstmalige Integration des OpenIGTLink-Netzwerkprotokolls in die medizinische Prototyping-Plattform MeVisLab, die anhand eines NDI-Navigationssystems evaluiert wurde. Außerdem wurde hier ebenfalls zum ersten Mal die Konzeption und Implementierung eines medizinischen Software-Prototypen zur Unterstützung der intraoperativen gynäkologischen Brachytherapie vorgestellt. Der Software-Prototyp enthielt auch ein Modul zur erweiterten Visualisierung bei der MR-gestützten interstitiellen gynäkologischen Brachytherapie, welches unter anderem die Registrierung eines gynäkologischen Brachytherapie-Instruments in einen intraoperativen Datensatz einer Patientin ermöglichte. Die einzelnen Module führten zur Vorstellung eines umfassenden bildgestützten Systems für die gynäkologische Brachytherapie in einem multimodalen Operationssaal. Dieses System deckt die prä-, intra- und postoperative Behandlungsphase bei einer interstitiellen gynäkologischen Brachytherapie ab
    corecore