17,861 research outputs found

    A Robust Adaptive Stochastic Gradient Method for Deep Learning

    Full text link
    Stochastic gradient algorithms are the main focus of large-scale optimization problems and led to important successes in the recent advancement of the deep learning algorithms. The convergence of SGD depends on the careful choice of learning rate and the amount of the noise in stochastic estimates of the gradients. In this paper, we propose an adaptive learning rate algorithm, which utilizes stochastic curvature information of the loss function for automatically tuning the learning rates. The information about the element-wise curvature of the loss function is estimated from the local statistics of the stochastic first order gradients. We further propose a new variance reduction technique to speed up the convergence. In our experiments with deep neural networks, we obtained better performance compared to the popular stochastic gradient algorithms.Comment: IJCNN 2017 Accepted Paper, An extension of our paper, "ADASECANT: Robust Adaptive Secant Method for Stochastic Gradient

    A neural network-based framework for financial model calibration

    Full text link
    A data-driven approach called CaNN (Calibration Neural Network) is proposed to calibrate financial asset price models using an Artificial Neural Network (ANN). Determining optimal values of the model parameters is formulated as training hidden neurons within a machine learning framework, based on available financial option prices. The framework consists of two parts: a forward pass in which we train the weights of the ANN off-line, valuing options under many different asset model parameter settings; and a backward pass, in which we evaluate the trained ANN-solver on-line, aiming to find the weights of the neurons in the input layer. The rapid on-line learning of implied volatility by ANNs, in combination with the use of an adapted parallel global optimization method, tackles the computation bottleneck and provides a fast and reliable technique for calibrating model parameters while avoiding, as much as possible, getting stuck in local minima. Numerical experiments confirm that this machine-learning framework can be employed to calibrate parameters of high-dimensional stochastic volatility models efficiently and accurately.Comment: 34 pages, 9 figures, 11 table

    Shaping the learning landscape in neural networks around wide flat minima

    Full text link
    Learning in Deep Neural Networks (DNN) takes place by minimizing a non-convex high-dimensional loss function, typically by a stochastic gradient descent (SGD) strategy. The learning process is observed to be able to find good minimizers without getting stuck in local critical points, and that such minimizers are often satisfactory at avoiding overfitting. How these two features can be kept under control in nonlinear devices composed of millions of tunable connections is a profound and far reaching open question. In this paper we study basic non-convex one- and two-layer neural network models which learn random patterns, and derive a number of basic geometrical and algorithmic features which suggest some answers. We first show that the error loss function presents few extremely wide flat minima (WFM) which coexist with narrower minima and critical points. We then show that the minimizers of the cross-entropy loss function overlap with the WFM of the error loss. We also show examples of learning devices for which WFM do not exist. From the algorithmic perspective we derive entropy driven greedy and message passing algorithms which focus their search on wide flat regions of minimizers. In the case of SGD and cross-entropy loss, we show that a slow reduction of the norm of the weights along the learning process also leads to WFM. We corroborate the results by a numerical study of the correlations between the volumes of the minimizers, their Hessian and their generalization performance on real data.Comment: 37 pages (16 main text), 10 figures (7 main text

    Learning Generative Models with Sinkhorn Divergences

    Full text link
    The ability to compare two degenerate probability distributions (i.e. two probability distributions supported on two distinct low-dimensional manifolds living in a much higher-dimensional space) is a crucial problem arising in the estimation of generative models for high-dimensional observations such as those arising in computer vision or natural language. It is known that optimal transport metrics can represent a cure for this problem, since they were specifically designed as an alternative to information divergences to handle such problematic scenarios. Unfortunately, training generative machines using OT raises formidable computational and statistical challenges, because of (i) the computational burden of evaluating OT losses, (ii) the instability and lack of smoothness of these losses, (iii) the difficulty to estimate robustly these losses and their gradients in high dimension. This paper presents the first tractable computational method to train large scale generative models using an optimal transport loss, and tackles these three issues by relying on two key ideas: (a) entropic smoothing, which turns the original OT loss into one that can be computed using Sinkhorn fixed point iterations; (b) algorithmic (automatic) differentiation of these iterations. These two approximations result in a robust and differentiable approximation of the OT loss with streamlined GPU execution. Entropic smoothing generates a family of losses interpolating between Wasserstein (OT) and Maximum Mean Discrepancy (MMD), thus allowing to find a sweet spot leveraging the geometry of OT and the favorable high-dimensional sample complexity of MMD which comes with unbiased gradient estimates. The resulting computational architecture complements nicely standard deep network generative models by a stack of extra layers implementing the loss function
    • …
    corecore