3 research outputs found

    A Fast Run-Length Algorithm for Wavelet Image Coding with Reduced Memory Usage

    No full text

    Compression Efficiency for Combining Different Embedded Image Compression Techniques with Huffman Encoding

    Get PDF
    This thesis presents a technique for image compression which uses the different embedded Wavelet based image coding in combination with Huffman- encoder(for further compression). There are different types of algorithms available for lossy image compression out of which Embedded Zerotree Wavelet(EZW), Set Partitioning in Hierarchical Trees (SPIHT) and Modified SPIHT algorithms are the some of the important compression techniques. EZW algorithm is based on progressive encoding to compress an image into a bit stream with increasing accuracy. The EZW encoder was originally designed to operate on 2D images, but it can also use to other dimensional signals. Progressive encoding is also called as embedded encoding. Main feature of ezw algorithm is capability of meeting an exact target bit rate with corresponding rate distortion rate(RDF). Set Partitioning in Hierarchical Trees (SPIHT) is an improved version of EZW and has become the general standard of EZW. SPIHT is a very efficient image compression algorithm that is based on the idea of coding groups of wavelet coefficients as zero trees. Since the order in which the subsets are tested for significance is important in a practical implementation the significance information is stored in three ordered lists called list of insignificant sets (LIS) list of insignificant pixels (LIP) and list of significant pixels (LSP). Modified SPIHT algorithm and the preprocessing techniques provide significant quality (both subjectively and objectively) reconstruction at the decoder with little additional computational complexity as compared to the previous techniques. This proposed method can reduce redundancy to a certain extend. Simulation results show that these hybrid algorithms yield quite promising PSNR values at low bitrates

    On the design of fast and efficient wavelet image coders with reduced memory usage

    Full text link
    Image compression is of great importance in multimedia systems and applications because it drastically reduces bandwidth requirements for transmission and memory requirements for storage. Although earlier standards for image compression were based on the Discrete Cosine Transform (DCT), a recently developed mathematical technique, called Discrete Wavelet Transform (DWT), has been found to be more efficient for image coding. Despite improvements in compression efficiency, wavelet image coders significantly increase memory usage and complexity when compared with DCT-based coders. A major reason for the high memory requirements is that the usual algorithm to compute the wavelet transform requires the entire image to be in memory. Although some proposals reduce the memory usage, they present problems that hinder their implementation. In addition, some wavelet image coders, like SPIHT (which has become a benchmark for wavelet coding), always need to hold the entire image in memory. Regarding the complexity of the coders, SPIHT can be considered quite complex because it performs bit-plane coding with multiple image scans. The wavelet-based JPEG 2000 standard is still more complex because it improves coding efficiency through time-consuming methods, such as an iterative optimization algorithm based on the Lagrange multiplier method, and high-order context modeling. In this thesis, we aim to reduce memory usage and complexity in wavelet-based image coding, while preserving compression efficiency. To this end, a run-length encoder and a tree-based wavelet encoder are proposed. In addition, a new algorithm to efficiently compute the wavelet transform is presented. This algorithm achieves low memory consumption using line-by-line processing, and it employs recursion to automatically place the order in which the wavelet transform is computed, solving some synchronization problems that have not been tackled by previous proposals. The proposed encodeOliver Gil, JS. (2006). On the design of fast and efficient wavelet image coders with reduced memory usage [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/1826Palanci
    corecore