4 research outputs found

    A fast multiple longest common subsequence (MLCS) algorithm

    No full text
    Title from PDF of title page (University of Missouri--Columbia, viewed on June 30, 2010).The entire thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file; a non-technical public abstract appears in the public.pdf file.Thesis advisor: Dr. Yi Shang.M.S. University of Missouri--Columbia 2010.[ACCESS RESTRICTED TO THE UNIVERSITY OF MISSOURI AT REQUEST OF AUTHOR.] Finding the longest common subsequence (LCS) of multiple strings is an NP-hard problem, with many applications in the areas of bioinformatics and computational genomics. Although significant efforts have been made to address the problem and its special cases, the increasing complexity and size of biological data require more efficient methods applicable to an arbitrary number of strings. In this thesis, we present a new algorithm for the general case of multiple LCS (or MLCS) problem, i.e., finding a LCS of any number of strings, and its parallel realization. The algorithm is based on the dominant point approach and employs a fast divide and- conquer technique to compute the dominant points. When applied to a case of 3 strings, our algorithm demonstrates the same performance as the fastest existing MLCS algorithm designed for that specific case. When applied to more than 3 strings, our algorithm is significantly faster than the best existing sequential methods, reaching up to 2-3 orders of magnitude faster speed on large-size problems. Finally, we present an efficient parallel implementation of the algorithm. Evaluating the parallel algorithm on a benchmark set of both random and biological sequences reveals a near-linear speed-up with respect to the sequential algorithm.Includes bibliographical reference
    corecore