24,120 research outputs found

    Sparse kernel density estimation technique based on zero-norm constraint

    Get PDF
    A sparse kernel density estimator is derived based on the zero-norm constraint, in which the zero-norm of the kernel weights is incorporated to enhance model sparsity. The classical Parzen window estimate is adopted as the desired response for density estimation, and an approximate function of the zero-norm is used for achieving mathemtical tractability and algorithmic efficiency. Under the mild condition of the positive definite design matrix, the kernel weights of the proposed density estimator based on the zero-norm approximation can be obtained using the multiplicative nonnegative quadratic programming algorithm. Using the -optimality based selection algorithm as the preprocessing to select a small significant subset design matrix, the proposed zero-norm based approach offers an effective means for constructing very sparse kernel density estimates with excellent generalisation performance

    Representation of Functional Data in Neural Networks

    Get PDF
    Functional Data Analysis (FDA) is an extension of traditional data analysis to functional data, for example spectra, temporal series, spatio-temporal images, gesture recognition data, etc. Functional data are rarely known in practice; usually a regular or irregular sampling is known. For this reason, some processing is needed in order to benefit from the smooth character of functional data in the analysis methods. This paper shows how to extend the Radial-Basis Function Networks (RBFN) and Multi-Layer Perceptron (MLP) models to functional data inputs, in particular when the latter are known through lists of input-output pairs. Various possibilities for functional processing are discussed, including the projection on smooth bases, Functional Principal Component Analysis, functional centering and reduction, and the use of differential operators. It is shown how to incorporate these functional processing into the RBFN and MLP models. The functional approach is illustrated on a benchmark of spectrometric data analysis.Comment: Also available online from: http://www.sciencedirect.com/science/journal/0925231

    Modeling association between DNA copy number and gene expression with constrained piecewise linear regression splines

    Get PDF
    DNA copy number and mRNA expression are widely used data types in cancer studies, which combined provide more insight than separately. Whereas in existing literature the form of the relationship between these two types of markers is fixed a priori, in this paper we model their association. We employ piecewise linear regression splines (PLRS), which combine good interpretation with sufficient flexibility to identify any plausible type of relationship. The specification of the model leads to estimation and model selection in a constrained, nonstandard setting. We provide methodology for testing the effect of DNA on mRNA and choosing the appropriate model. Furthermore, we present a novel approach to obtain reliable confidence bands for constrained PLRS, which incorporates model uncertainty. The procedures are applied to colorectal and breast cancer data. Common assumptions are found to be potentially misleading for biologically relevant genes. More flexible models may bring more insight in the interaction between the two markers.Comment: Published in at http://dx.doi.org/10.1214/12-AOAS605 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org
    corecore