8,670 research outputs found

    An efficient closed frequent itemset miner for the MOA stream mining system

    Get PDF
    Mining itemsets is a central task in data mining, both in the batch and the streaming paradigms. While robust, efficient, and well-tested implementations exist for batch mining, hardly any publicly available equivalent exists for the streaming scenario. The lack of an efficient, usable tool for the task hinders its use by practitioners and makes it difficult to assess new research in the area. To alleviate this situation, we review the algorithms described in the literature, and implement and evaluate the IncMine algorithm by Cheng, Ke, and Ng (2008) for mining frequent closed itemsets from data streams. Our implementation works on top of the MOA (Massive Online Analysis) stream mining framework to ease its use and integration with other stream mining tasks. We provide a PAC-style rigorous analysis of the quality of the output of IncMine as a function of its parameters; this type of analysis is rare in pattern mining algorithms. As a by-product, the analysis shows how one of the user-provided parameters in the original description can be removed entirely while retaining the performance guarantees. Finally, we experimentally confirm both on synthetic and real data the excellent performance of the algorithm, as reported in the original paper, and its ability to handle concept drift.Postprint (published version

    PADDLE: Proximal Algorithm for Dual Dictionaries LEarning

    Full text link
    Recently, considerable research efforts have been devoted to the design of methods to learn from data overcomplete dictionaries for sparse coding. However, learned dictionaries require the solution of an optimization problem for coding new data. In order to overcome this drawback, we propose an algorithm aimed at learning both a dictionary and its dual: a linear mapping directly performing the coding. By leveraging on proximal methods, our algorithm jointly minimizes the reconstruction error of the dictionary and the coding error of its dual; the sparsity of the representation is induced by an â„“1\ell_1-based penalty on its coefficients. The results obtained on synthetic data and real images show that the algorithm is capable of recovering the expected dictionaries. Furthermore, on a benchmark dataset, we show that the image features obtained from the dual matrix yield state-of-the-art classification performance while being much less computational intensive
    • …
    corecore