26,051 research outputs found

    Automated Detection of Regions of Interest for Brain Perfusion MR Images

    Get PDF
    Images with abnormal brain anatomy produce problems for automatic segmentation techniques, and as a result poor ROI detection affects both quantitative measurements and visual assessment of perfusion data. This paper presents a new approach for fully automated and relatively accurate ROI detection from dynamic susceptibility contrast perfusion magnetic resonance and can therefore be applied excellently in the perfusion analysis. In the proposed approach the segmentation output is a binary mask of perfusion ROI that has zero values for air pixels, pixels that represent non-brain tissues, and cerebrospinal fluid pixels. The process of binary mask producing starts with extracting low intensity pixels by thresholding. Optimal low-threshold value is solved by obtaining intensity pixels information from the approximate anatomical brain location. Holes filling algorithm and binary region growing algorithm are used to remove falsely detected regions and produce region of only brain tissues. Further, CSF pixels extraction is provided by thresholding of high intensity pixels from region of only brain tissues. Each time-point image of the perfusion sequence is used for adjustment of CSF pixels location. The segmentation results were compared with the manual segmentation performed by experienced radiologists, considered as the reference standard for evaluation of proposed approach. On average of 120 images the segmentation results have a good agreement with the reference standard. All detected perfusion ROIs were deemed by two experienced radiologists as satisfactory enough for clinical use. The results show that proposed approach is suitable to be used for perfusion ROI detection from DSC head scans. Segmentation tool based on the proposed approach can be implemented as a part of any automatic brain image processing system for clinical use

    Deep Neural Network with l2-norm Unit for Brain Lesions Detection

    Full text link
    Automated brain lesions detection is an important and very challenging clinical diagnostic task because the lesions have different sizes, shapes, contrasts, and locations. Deep Learning recently has shown promising progress in many application fields, which motivates us to apply this technology for such important problem. In this paper, we propose a novel and end-to-end trainable approach for brain lesions classification and detection by using deep Convolutional Neural Network (CNN). In order to investigate the applicability, we applied our approach on several brain diseases including high and low-grade glioma tumor, ischemic stroke, Alzheimer diseases, by which the brain Magnetic Resonance Images (MRI) have been applied as an input for the analysis. We proposed a new operating unit which receives features from several projections of a subset units of the bottom layer and computes a normalized l2-norm for next layer. We evaluated the proposed approach on two different CNN architectures and number of popular benchmark datasets. The experimental results demonstrate the superior ability of the proposed approach.Comment: Accepted for presentation in ICONIP-201

    A Survey on Deep Learning in Medical Image Analysis

    Full text link
    Deep learning algorithms, in particular convolutional networks, have rapidly become a methodology of choice for analyzing medical images. This paper reviews the major deep learning concepts pertinent to medical image analysis and summarizes over 300 contributions to the field, most of which appeared in the last year. We survey the use of deep learning for image classification, object detection, segmentation, registration, and other tasks and provide concise overviews of studies per application area. Open challenges and directions for future research are discussed.Comment: Revised survey includes expanded discussion section and reworked introductory section on common deep architectures. Added missed papers from before Feb 1st 201

    Tversky loss function for image segmentation using 3D fully convolutional deep networks

    Full text link
    Fully convolutional deep neural networks carry out excellent potential for fast and accurate image segmentation. One of the main challenges in training these networks is data imbalance, which is particularly problematic in medical imaging applications such as lesion segmentation where the number of lesion voxels is often much lower than the number of non-lesion voxels. Training with unbalanced data can lead to predictions that are severely biased towards high precision but low recall (sensitivity), which is undesired especially in medical applications where false negatives are much less tolerable than false positives. Several methods have been proposed to deal with this problem including balanced sampling, two step training, sample re-weighting, and similarity loss functions. In this paper, we propose a generalized loss function based on the Tversky index to address the issue of data imbalance and achieve much better trade-off between precision and recall in training 3D fully convolutional deep neural networks. Experimental results in multiple sclerosis lesion segmentation on magnetic resonance images show improved F2 score, Dice coefficient, and the area under the precision-recall curve in test data. Based on these results we suggest Tversky loss function as a generalized framework to effectively train deep neural networks
    corecore