519 research outputs found

    Stochastic Training of Neural Networks via Successive Convex Approximations

    Full text link
    This paper proposes a new family of algorithms for training neural networks (NNs). These are based on recent developments in the field of non-convex optimization, going under the general name of successive convex approximation (SCA) techniques. The basic idea is to iteratively replace the original (non-convex, highly dimensional) learning problem with a sequence of (strongly convex) approximations, which are both accurate and simple to optimize. Differently from similar ideas (e.g., quasi-Newton algorithms), the approximations can be constructed using only first-order information of the neural network function, in a stochastic fashion, while exploiting the overall structure of the learning problem for a faster convergence. We discuss several use cases, based on different choices for the loss function (e.g., squared loss and cross-entropy loss), and for the regularization of the NN's weights. We experiment on several medium-sized benchmark problems, and on a large-scale dataset involving simulated physical data. The results show how the algorithm outperforms state-of-the-art techniques, providing faster convergence to a better minimum. Additionally, we show how the algorithm can be easily parallelized over multiple computational units without hindering its performance. In particular, each computational unit can optimize a tailored surrogate function defined on a randomly assigned subset of the input variables, whose dimension can be selected depending entirely on the available computational power.Comment: Preprint submitted to IEEE Transactions on Neural Networks and Learning System

    Standard Bundle Methods: Untrusted Models and Duality

    Get PDF
    We review the basic ideas underlying the vast family of algorithms for nonsmooth convex optimization known as "bundle methods|. In a nutshell, these approaches are based on constructing models of the function, but lack of continuity of first-order information implies that these models cannot be trusted, not even close to an optimum. Therefore, many different forms of stabilization have been proposed to try to avoid being led to areas where the model is so inaccurate as to result in almost useless steps. In the development of these methods, duality arguments are useful, if not outright necessary, to better analyze the behaviour of the algorithms. Also, in many relevant applications the function at hand is itself a dual one, so that duality allows to map back algorithmic concepts and results into a "primal space" where they can be exploited; in turn, structure in that space can be exploited to improve the algorithms' behaviour, e.g. by developing better models. We present an updated picture of the many developments around the basic idea along at least three different axes: form of the stabilization, form of the model, and approximate evaluation of the function

    Optimization with Sparsity-Inducing Penalties

    Get PDF
    Sparse estimation methods are aimed at using or obtaining parsimonious representations of data or models. They were first dedicated to linear variable selection but numerous extensions have now emerged such as structured sparsity or kernel selection. It turns out that many of the related estimation problems can be cast as convex optimization problems by regularizing the empirical risk with appropriate non-smooth norms. The goal of this paper is to present from a general perspective optimization tools and techniques dedicated to such sparsity-inducing penalties. We cover proximal methods, block-coordinate descent, reweighted â„“2\ell_2-penalized techniques, working-set and homotopy methods, as well as non-convex formulations and extensions, and provide an extensive set of experiments to compare various algorithms from a computational point of view

    Semi-local scaling exponent estimation with box-penalty constraints and total-variation regularisation

    Get PDF
    We here establish and exploit the result that 2-D isotropic self-similar fields beget quasi-decorrelated wavelet coefficients and that the resulting localised log sample second moment statistic is asymptotically normal. This leads to the development of a semi-local scaling exponent estimation framework with optimally modified weights. Furthermore, recent interest in penalty methods for least squares problems and generalised Lasso for scaling exponent estimation inspires the simultaneous incorporation of both bounding box constraints and total variation smoothing into an iteratively reweighted least-squares estimator framework. Numerical results on fractional Brownian fields with global and piecewise constant, semi-local Hurst parameters illustrate the benefits of the new estimators

    Methods for Learning Structured Prediction in Semantic Segmentation of Natural Images

    Get PDF
    Automatic segmentation and recognition of semantic classes in natural images is an important open problem in computer vision. In this work, we investigate three different approaches to recognition: without supervision, with supervision on level of images, and with supervision on the level of pixels. The thesis comprises three parts. The first part introduces a clustering algorithm that optimizes a novel information-theoretic objective function. We show that the proposed algorithm has clear advantages over standard algorithms from the literature on a wide array of datasets. Clustering algorithms are an important building block for higher-level computer vision applications, in particular for semantic segmentation. The second part of this work proposes an algorithm for automatic segmentation and recognition of object classes in natural images, that learns a segmentation model solely from annotation in the form of presence and absence of object classes in images. The third and main part of this work investigates one of the most popular approaches to the task of object class segmentation and semantic segmentation, based on conditional random fields and structured prediction. We investigate several learning algorithms, in particular in combination with approximate inference procedures. We show how structured models for image segmentation can be learned exactly in practical settings, even in the presence of many loops in the underlying neighborhood graphs. The introduced methods provide results advancing the state-of-the-art on two complex benchmark datasets for semantic segmentation, the MSRC-21 Dataset of RGB images and the NYU V2 Dataset or RGB-D images of indoor scenes. Finally, we introduce a software library that al- lows us to perform extensive empirical comparisons of state-of-the-art structured learning approaches. This allows us to characterize their practical properties in a range of applications, in particular for semantic segmentation and object class segmentation.Methoden zum Lernen von Strukturierter Vorhersage in Semantischer Segmentierung von Natürlichen Bildern Automatische Segmentierung und Erkennung von semantischen Klassen in natür- lichen Bildern ist ein wichtiges offenes Problem des maschinellen Sehens. In dieser Arbeit untersuchen wir drei möglichen Ansätze der Erkennung: ohne Überwachung, mit Überwachung auf Ebene von Bildern und mit Überwachung auf Ebene von Pixeln. Diese Arbeit setzt sich aus drei Teilen zusammen. Im ersten Teil der Arbeit schlagen wir einen Clustering-Algorithmus vor, der eine neuartige, informationstheoretische Zielfunktion optimiert. Wir zeigen, dass der vorgestellte Algorithmus üblichen Standardverfahren aus der Literatur gegenüber klare Vorteile auf vielen verschiedenen Datensätzen hat. Clustering ist ein wichtiger Baustein in vielen Applikationen des machinellen Sehens, insbesondere in der automatischen Segmentierung. Der zweite Teil dieser Arbeit stellt ein Verfahren zur automatischen Segmentierung und Erkennung von Objektklassen in natürlichen Bildern vor, das mit Hilfe von Supervision in Form von Klassen-Vorkommen auf Bildern in der Lage ist ein Segmentierungsmodell zu lernen. Der dritte Teil der Arbeit untersucht einen der am weitesten verbreiteten Ansätze zur semantischen Segmentierung und Objektklassensegmentierung, Conditional Random Fields, verbunden mit Verfahren der strukturierten Vorhersage. Wir untersuchen verschiedene Lernalgorithmen des strukturierten Lernens, insbesondere im Zusammenhang mit approximativer Vorhersage. Wir zeigen, dass es möglich ist trotz des Vorhandenseins von Kreisen in den betrachteten Nachbarschaftsgraphen exakte strukturierte Modelle zur Bildsegmentierung zu lernen. Mit den vorgestellten Methoden bringen wir den Stand der Kunst auf zwei komplexen Datensätzen zur semantischen Segmentierung voran, dem MSRC-21 Datensatz von RGB-Bildern und dem NYU V2 Datensatz von RGB-D Bildern von Innenraum-Szenen. Wir stellen außerdem eine Software-Bibliothek vor, die es erlaubt einen weitreichenden Vergleich der besten Lernverfahren für strukturiertes Lernen durchzuführen. Unsere Studie erlaubt uns eine Charakterisierung der betrachteten Algorithmen in einer Reihe von Anwendungen, insbesondere der semantischen Segmentierung und Objektklassensegmentierung
    • …
    corecore