360 research outputs found

    A Family of Erasure Correcting Codes with Low Repair Bandwidth and Low Repair Complexity

    Get PDF
    We present the construction of a new family of erasure correcting codes for distributed storage that yield low repair bandwidth and low repair complexity. The construction is based on two classes of parity symbols. The primary goal of the first class of symbols is to provide good erasure correcting capability, while the second class facilitates node repair, reducing the repair bandwidth and the repair complexity. We compare the proposed codes with other codes proposed in the literature.Comment: Accepted, will appear in the proceedings of Globecom 2015 (Selected Areas in Communications: Data Storage

    Explicit MDS Codes for Optimal Repair Bandwidth

    Get PDF
    MDS codes are erasure-correcting codes that can correct the maximum number of erasures for a given number of redundancy or parity symbols. If an MDS code has rr parities and no more than rr erasures occur, then by transmitting all the remaining data in the code, the original information can be recovered. However, it was shown that in order to recover a single symbol erasure, only a fraction of 1/r1/r of the information needs to be transmitted. This fraction is called the repair bandwidth (fraction). Explicit code constructions were given in previous works. If we view each symbol in the code as a vector or a column over some field, then the code forms a 2D array and such codes are especially widely used in storage systems. In this paper, we address the following question: given the length of the column ll, number of parities rr, can we construct high-rate MDS array codes with optimal repair bandwidth of 1/r1/r, whose code length is as long as possible? In this paper, we give code constructions such that the code length is (r+1)logrl(r+1)\log_r l.Comment: 17 page

    Code Constructions for Distributed Storage With Low Repair Bandwidth and Low Repair Complexity

    Get PDF
    We present the construction of a family of erasure correcting codes for distributed storage that achieve low repair bandwidth and complexity at the expense of a lower fault tolerance. The construction is based on two classes of codes, where the primary goal of the first class of codes is to provide fault tolerance, while the second class aims at reducing the repair bandwidth and repair complexity. The repair procedure is a two- step procedure where parts of the failed node are repaired in the first step using the first code. The downloaded symbols during the first step are cached in the memory and used to repair the remaining erased data symbols at minimal additional read cost during the second step. The first class of codes is based on MDS codes modified using piggybacks, while the second class is designed to reduce the number of additional symbols that need to be downloaded to repair the remaining erased symbols. We numerically show that the proposed codes achieve better repair bandwidth compared to MDS codes, codes constructed using piggybacks, and local reconstruction/Pyramid codes, while a better repair complexity is achieved when compared to MDS, Zigzag, Pyramid codes, and codes constructed using piggybacks.Comment: To appear in IEEE Transactions on Communication

    Long MDS Codes for Optimal Repair Bandwidth

    Get PDF
    MDS codes are erasure-correcting codes that can correct the maximum number of erasures given the number of redundancy or parity symbols. If an MDS code has r parities and no more than r erasures occur, then by transmitting all the remaining data in the code one can recover the original information. However, it was shown that in order to recover a single symbol erasure, only a fraction of 1/r of the information needs to be transmitted. This fraction is called the repair bandwidth (fraction). Explicit code constructions were given in previous works. If we view each symbol in the code as a vector or a column, then the code forms a 2D array and such codes are especially widely used in storage systems. In this paper, we ask the following question: given the length of the column l, can we construct high-rate MDS array codes with optimal repair bandwidth of 1/r, whose code length is as long as possible? In this paper, we give code constructions such that the code length is (r + 1)log_r l

    An Improved Outer Bound on the Storage-Repair-Bandwidth Tradeoff of Exact-Repair Regenerating Codes

    Full text link
    In this paper we establish an improved outer bound on the storage-repair-bandwidth tradeoff of regenerating codes under exact repair. The result shows that in particular, it is not possible to construct exact-repair regenerating codes that asymptotically achieve the tradeoff that holds for functional repair. While this had been shown earlier by Tian for the special case of [n,k,d]=[4,3,3][n,k,d]=[4,3,3] the present result holds for general [n,k,d][n,k,d]. The new outer bound is obtained by building on the framework established earlier by Shah et al.Comment: 14 page
    corecore