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A Family of Erasure Correcting Codes with Low
Repair Bandwidth and Low Repair Complexity

Siddhartha Kumar†, Alexandre Graell i Amat†, Iryna Andriyanova‡, and Fredrik Brännström†
†Department of Signals and Systems, Chalmers University of Technology, Gothenburg, Sweden
‡ETIS Laboratory, ENSEA/University of Cergy-Pontoise/CNRS, Cergy-Pontoise, France

Abstract—We present the construction of a new family of
erasure correcting codes for distributed storage that yield low
repair bandwidth and low repair complexity. The construction
is based on two classes of parity symbols. The primary goal
of the first class of symbols is to provide good fault tolerance,
while the second class facilitates node repair, reducing the repair
bandwidth and the repair complexity. We compare the proposed
codes with other codes proposed in the literature.

I. INTRODUCTION

Distributed storage (DS) uses a network of interconnected
inexpensive storage devices (referred to as storage nodes or
simply nodes) to store data reliably over long periods of time.
Reliability against node failures (commonly referred to as fault
tolerance) is achieved by means of erasure correcting coding.
Furthermore, when a node fails, a new node needs to be added
to the DS network and populated with data to maintain the
initial state of reliability. The problem of repairing a failed
node is known as the repair problem.

Classical maximum distance separable (MDS) codes are op-
timal in terms of the fault tolerance/storage overhead tradeoff.
However, the repair of a failed node requires the retrieval of
large amounts of data from a large subset of nodes. Therefore,
in the recent years, the design of erasure correcting codes that
reduce the cost of repair has attracted a great deal of attention.
Pyramid codes [1] were one of the first code constructions that
addressed this problem. In particular, they aim at reducing the
number of nodes that need to be contacted to repair a failed
node, known as the repair access. Other codes that reduce the
repair access are the local reconstruction codes (LRCs) [2],
and the locally repairable codes [3], [4].

Other code constructions aim at reducing the repair band-
width, defined as the amount of information that needs
to be read from the DS network to repair a failed node.
Among them, we can mention minimum disk I/O repairable
(MDR) codes [5], Zigzag codes [6] and piggyback codes
[7]. Piggybacking consists of adding carefully chosen linear
combinations of data symbols (called piggybacks) to the parity
symbols of a given erasure correcting code. This results in
a lower repair bandwidth at the expense of a lower erasure
correcting capability with respect to the original code.

In this paper, we propose a family of erasure correcting
codes that achieve low repair bandwidth and low repair com-
plexity. In particular, we propose a systematic code construc-
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Fig. 1: System model.

tion based on two classes of parity symbols. Correspondingly,
there are two classes of parity nodes. The first class of parity
nodes, whose primary goal is to provide erasure correcting
capability, is constructed using an MDS code modified by
applying specially designed piggybacks to some of its code
symbols. The second class of parity nodes is constructed using
a block code whose parity symbols are obtained with simple
additions. This class of parity nodes does not have the purpose
to bring any additional erasure correcting capability, but to
facilitate node repair at low repair bandwidth and low repair
complexity. In the paper, we compare the proposed codes with
MDR codes, Zigzag codes, piggyback codes and LRCs [2], in
terms of repair bandwidth and repair complexity.

Notation: We define the operator (a+b)k , (a+b) mod k.
The Galois field of order qp is denoted by Fqp .

II. CODE CONSTRUCTION

We consider the distributed storage system depicted in
Fig. 1. There are k data nodes, each containing a very large
number of data symbols over Fqp . As we shall see in the
sequel, the proposed code construction works with blocks of
k data symbols per node. Thus, without loss of generality, we
assume that each node contains k data symbols. We denote
by di,j , i, j = 0, . . . , k − 1, the ith data symbol in the jth
data node. We say that the data symbols form a k × k data
array D, where di,j = [D]i,j . For later use, we also define
the set of data symbols D , {di,j}. Further, there are n − k
parity nodes each storing k parity symbols. We denote by pi,j ,
i = 0, . . . , k − 1, j = k, . . . , n − 1, the ith parity symbol in
the jth parity node, and define the set Pj as the set of parity
symbols in the jth parity node. The set of all parity symbols
is denoted by P , ∪j{Pj}. We say that the data and parity
symbols form a k × n code array C, where ci,j = [C]i,j .



Note that ci,j = di,j for i, j = 0, . . . , k− 1 and ci,j = pi,j for
i = 0, . . . , k − 1, j = k, . . . , n− 1.

Our main goal is to construct codes that yield low re-
pair bandwidth and low repair complexity of a single failed
systematic node. To this purpose, we construct a family of
systematic (n, k) codes consisting of two different classes
of parity symbols. Correspondingly, there are two classes of
parity nodes, referred to as Class A and Class B parity nodes,
as shown in Fig. 1. Class A and Class B parity nodes are built
using an (nA, k) code and an (nB, k) code, respectively, such
that n = nA +nB− k. In other words, the parity nodes of the
(n, k) code1 correspond to the parity nodes of Class A and
Class B codes. The primary goal of Class A parity nodes is to
achieve good erasure correcting capability, while the purpose
of Class B nodes is to yield low repair bandwidth and low
repair complexity. In particular, we focus on the repair of data
nodes. The repair bandwidth (in bits) per node, denoted by γ,
is proportional to the average number of symbols (data and
parity) that need to be read to repair a data symbol, denoted
by λ. More precisely, let β be the number of symbols per
node2. Then,

λ =
γ

νβ
, (1)

where ν = dlog2 q
pe is the size (in bits) of a symbol. λ can

be interpreted as the repair bandwidth normalized by the size
(in bits) of a node. Therefore, in the rest of the paper we will
use λ to refer to the normalized repair bandwidth.

The main principle behind our code construction is the
following. The repair is performed one symbol at a time. After
the repair of a data symbol is accomplished, the symbols read
to repair that symbol are cached in the memory. Therefore,
they can be used to repair the remaining data symbols at no
additional read cost. The proposed codes are constructed in
such a way that the repair of a new data symbol requires a
low additional read cost (defined as the number of additional
symbols that need to be read to repair the data symbol), so that
λ (hence γ) is reduced. Since we will often use the concepts
of read cost and additional read cost in the remainder of the
paper, we define them in the following.

Definition 1: The read cost of a symbol is the number
of symbols that need to be read to repair the symbol. The
additional read cost of a symbol is the additional number of
symbols that need to be read to repair the symbol, considering
that other symbols are already cached in the memory (i.e., have
been read to recover some other data symbols previously).

III. CLASS A PARITY NODES

Class A parity nodes are constructed using a modified
(nA, k) MDS code, k+ 2 ≤ nA < 2k, over Fqp . In particular,
we start from an (nA, k) MDS code and apply piggybacks [7]
to some of the parity symbols. The construction of Class A
parity nodes is performed in two steps as follows.

1With some abuse of language we refer to the nodes storing the parity
symbols of a code as the parity nodes of the code.

2For our code construction, β = k, but this is not the case in general.
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Fig. 2: A (7, 5) Class A code with τ = 1 constructed from a (7, 5) MDS
code. PA

5 and PA
6 are the parity nodes. For each row j, colored symbols

belong to Rj .

1) Encode each row of the data array using an (nA, k) MDS
code (the same for each row). The parity symbol pAi,j is3

pAi,j =
k−1∑
l=0

αl,jdi,l, j = k, . . . ,nA − 1, (2)

where αl,j denotes a coefficient in Fqp . Store the parity
symbols in the corresponding row of the code array.
Overall, k(nA − k) parity symbols are generated.

2) Modify some of the parity symbols by adding piggy-
backs. Let τ , 1 ≤ τ ≤ nA − k − 1, be the number of
piggybacks introduced per row. The parity symbol pi,u
is obtained as

pAi,u = pAi,u + d(i+u−nA+τ+1)k,i, (3)

where u = nA − τ, . . . , nA − 1 and the second term in
the summation is the piggyback.

The fault tolerance (i.e., the number of node failures that
can be tolerated) of Class A codes is given in the following
theorem.

Theorem 1: An (nA, k) Class A code with τ piggybacks per
row can correct a minimum of nA − k− τ + 1 node failures.

Proof: The proof is given in the appendix.
When a failure of a data node occurs, Class A parity nodes

are used to repair τ + 1 of the k failed symbols. The Class A
parity symbols are constructed in such a way that, when node
j is erased, τ + 1 data symbols in this node can be repaired
reading the (non-failed) k− 1 data symbols in the jth row of
the data array and τ+1 parity symbols in the jth row of Class
A nodes (see also Section IV-C). For later use, we define the
set Rj as follows.

Definition 2: For j = 0, . . . , k − 1, define the set Rj as
Rj = {dj,(j+1)k , dj,(j+2)k , · · · , dj,(j+k−1)k}.

The set Rj is the set of k − 1 data symbols that are read
from row j to recover τ + 1 data symbols of node j using
Class A parity nodes.

Example 1: An example of Class A code is shown in Fig. 2.
One can verify that the code can correct any 2 node failures.

3We use the superscript A to indicate that the parity symbol is stored in a
Class A parity node.



For each row j, the set Rj is indicated in red color. For
instance, R0 = {d0,1, d0,2, d0,3, d0,4}.

The main purpose of Class A parity nodes is to provide good
erasure correcting capability. However, the use of piggybacks
helps also in reducing the number of symbols that need to
be read to repair the τ + 1 symbols of a failed node that are
repaired using Class A code, as compared to MDS codes. The
remaining k− τ − 1 data symbols of the failed node can also
be recovered from Class A parity nodes, but at a high symbol
read cost. Hence, the idea is to add another class of parity
nodes, namely Class B parity nodes, in such a way that these
symbols can be recovered with lower read cost.

IV. CLASS B PARITY NODES

Class B parity nodes are obtained using an (nB, k) linear
block code over Fqp to encode the k× k data symbols of the
data array, i.e., we use the (nB, k) code k times. This generates
(nB − k)× k Class B parity symbols, pBi,u, i = 0, . . . , k − 1,
u = nA, . . . , n− 1.

Definition 3: For j = 0, . . . , k − 1, define the set Qj as

Qj = {d(j+τ+1)k,j , d(j+τ+2)k,j , · · · , d(j+k−1)k,j}. (4)

Assume that data node j fails. It is easy to see that the set
Qj is the set of k− τ − 1 data symbols that are not recovered
using Class A parity nodes.

Example 2: For the example in Fig. 2, the setQj is indicated
by hatched symbols for each column j, j = 0, . . . , k− 1. For
instance, Q0 = {d2,0, d3,0, d4,0}.

For later use, we also define the following set.
Definition 4: For j = 0, . . . , k − 1, define the set Xj as

Xj = {dj,(j+1)k , dj,(j+2)k , · · · , dj,(j+k−τ−1)k}. (5)

Note that Xj = Rj ∩ {∪lQl}.
Example 3: For the example in Fig. 2, the set Xi is indicated

by hatched symbols for each row i. For instance, X0 = R0 ∩
{Q0 ∪Q1 ∪Q2 ∪Q3 ∪Q4} = {d0,1, d0,2, d0,3}.

The purpose of Class B parity nodes is to allow recovering
of the data symbols in Qj , j = 0, . . . , k−1, at a low additional
read cost. Note that after recovering τ+1 symbols using Class
A parity nodes, the data symbols in Rj are already stored
in the decoder memory, therefore they are accessible for the
recovery of the remaining k− τ − 1 data symbols using Class
B parity nodes without the need of reading them again. The
main idea is based on the following proposition.

Proposition 1: If a Class B parity symbol pB is the sum of
one data symbol d ∈ Qj and a number of data symbols in
Xj , then the recovery of d comes at the cost of one additional
read (one should read parity symbol pB).

This observation is used in the construction of Class B parity
nodes (see Section IV-A below) to reduce the normalized
repair bandwidth, λ. In particular, we add k − τ − 1 Class B
parity nodes which allow to reduce the additional read cost of
all k(k − τ − 1) data symbols in all Qj’s to 1. (The addition
of a single Class B parity node allows to recover one new
data symbol in each Qj , j = 0, . . . , k − 1, at the cost of one
additional read).

In order to describe the code construction, we define the
function read(d, pB) as follows.

Definition 5: Consider a Class B parity node and let PB

denote the set of parity symbols in this node. Also, let d ∈ Qj
for some j and pB ∈ PB be pB = d +

∑
d′∈D′ d′, where

D′ ⊂ D, i.e., the parity symbol pB is the sum of d and a
subset of other data symbols. Then,

read(d, pB) = |D̆\Xj |, (6)

where D̆ = {D′ ∪ d}.
For a given data symbol d, the function read(d, pB) gives

the additional number of symbols that need to be read to
recover d (considering the fact that some symbols are already
cached in the memory).

A. Construction Example

In the following, we propose a recursive algorithm for the
construction of Class B parity nodes. To ease understanding,
we introduce the algorithm through an example.

We construct a (10, 5) code starting from the (7, 5) Class A
code in Fig. 2. In particular, we construct k−τ−1 = 3 Class B
parity nodes, so that the additional number of reads to repair
each of the remaining failed k − τ − 1 = 3 symbols (after
recovering τ + 1 = 2 symbols using Class A parity nodes) is
1. With some abuse of notation, we denote these parity nodes
by PB

7 , PB
8 , and PB

9 .
Denote by A, ai,j = [A]i,j , a temporary matrix of read

values for the respective data symbols di,j . After Class A
decoding,

ai,j =


∞ if di,j ∈ {∪tQt}
k if i = j

1 otherwise,
(7)

where t = 0, . . . , k − 1. For our example, A after Class A
decoding is given in Fig. 3(a). Our algorithm operates on the
ai,js whose initial value is ∞ and aims to obtain the lowest
possible values for these ai,js under the given number of Class
B parity nodes. This is done in a recursive manner as follows.

1. Construct the first parity node, PB
7 .

1a For each symbol di,j define the set D̃i,j ,
{d(i+s)k,(j+s)k}k−1s=0 .

1b Start with the elements inQ0. Pick an element di,0 ∈ Q0

such that ai,0 = ∞, and d0,i ∈ X0\D̃i,0. For instance,
we take d2,0.

1c For t = 0, . . . , k − 1 compute

pBt,7 = d(i+t)k,t + dt,(i+t)k (8)

and update the respective ai,0 and a0,i,

a(i+t)k,t = at,(i+t)k = read(d(i+t)k,t, p
B
t,7). (9)

The resulting matrix A is shown in Fig. 3(b). There are
still entries ai,j =∞ that need to be handled.

1d For t = 0, . . . , k − 1 update

pBt,7 = pBt,7 + dt,(i′+t)k , (10)



5

1

∞
∞
∞

∞
5

1

∞
∞

∞
∞
5

1

∞

∞
∞
∞
5

1

1

∞
∞
∞
5

(a) Initial.

5

1

1

1

∞

∞
5

1

1

1

1

∞
5

1

1

1

1

∞
5

1

1

1

1

∞
5

(b) Step 1c.

5

1

1

2

3

3

5

1

1

2

2

3

5

1

1

1

2

3

5

1

1

1

2

3

5

(c) Step 1d.

5

1

1

2

1

1

5

1

1

2

2

1

5

1

1

1

2

1

5

1

1

1

2

1

5

(d) Step 2b.

5

1

1

1

1

1

5

1

1

1

1

1

5

1

1

1

1

1

5

1

1

1

1

1

5

(e) Step 3b.

Fig. 3: Update of A during the construction of Class B parity nodes for the example in Section IV-A. The updates of ai,j after each step are highlighted in
red color. The shaded symbols in column j denote the set Qj , while the shaded symbols in row i denote the set Xi.

PB
7 PB

8 PB
9

d2,0 + d0,2 + d0,1

d3,1 + d1,3 + d1,2

d4,2 + d2,4 + d2,3

d0,3 + d3,0 + d3,4

d1,4 + d4,1 + d4,0

d4,0 + d0,2

d0,1 + d1,3

d1,2 + d2,4

d2,3 + d3,0

d3,4 + d4,1

d3,0

d4,1

d0,2

d1,3

d2,4

Fig. 4: Class B parity nodes for the data nodes in Fig. 2.

where d0,i′ ∈ X0 and a0,i′ = ∞ after step 1b. Update
A accordingly (see Fig. 3(c)). Note that the read values
a(i+t)k,(j+t)k have not worsened. This comes from the
fact that the new added data symbol belongs to the cor-
responding set X and is already cached in the memory.
Thus, the additional read cost is 0. On the other hand,
the values a(j+t)k,(i+t)k increase.

2. Construct the second parity node, PB
8 .

2a Pick an element di,0 ∈ Q0 such that the corresponding
ai,j is maximal. In our example, this is d4,0 because
a4,0 = 3.

2b For t = 0, . . . , k− 1, do the following. Pick an element
dt,(u+t)k ∈ Xt\D̃i,j such that for all di′,j′ ∈ D̆,
read(di′,j′ , pt,8) ≤ ai′,j′ , where pB is set to pBt,8 =
d(i+t)k,t + dt,(u+t)k . For our example, we choose d0,2.
Note that the only other option, d0,3, is not a good choice
as the new additional read cost would increase from 1 to
2. If such dt,(u+t)k does not exist, set pBt,8 = d(i+t)k,t.
Update A. The updated matrix is shown in Fig. 3(d).

3. Construct PB
9 .

3a Pick an element di,0 ∈ Q0 such that the corresponding
ai,0 is maximal. In our example, this is d3,0.

3b For t = 0, . . . , k − 1, do the following. pBt,9 = d(i+t)k,t.
Update A. The resulting A has value k for all diagonal
elements and 1 elsewhere (Fig. 3(e)).

The Class B parity nodes PB
7 , PB

8 , and PB
9 are shown in

Fig. 4.
A general version of the algorithm to construct Class B

parity nodes can be found in the extended version of this paper
[8].

B. Discussion of the Construction Example
The construction of Class B parity nodes starts by selecting

an element di,j of a given Qj such that ai,j = ∞ and
dj,i ∈ Xj\D̃i,j (for simplicity, as in the example, we can
start with j = 0). The first parity symbol of P7 after step
1c is therefore p0,7 = di,0 + d0,i, and the remaining parity
symbols are obtained as in (8). By Proposition 1 the additional
read cost of di,j (after step 1c) is 1. The reason for selecting
dj,i ∈ Xj\D̃i,j is due to the fact that, again by Proposition 1,
its additional read cost is also 1. We remark that for each
di,j ∈ Qj it is not always possible to select dj,i ∈ Xj\D̃i,j
and set pj,7 = di,j +dj,i. This is the case when k < 2(τ + 1).
If dj,i ∈ Xj\D̃i,j does not exist, then we select dj,t ∈ Xj\D̃i,j
(details are given in [8]). In this case, the additional read cost
of dj,t (after step 1c) is > 1.

In general, step 1d has to be performed |Qj |−2 times,
corresponding to the number of entries ai,j =∞ per column
of A.

Adding k − τ − 1 Class B nodes allows to reduce the
additional read cost for all data symbols in all Qj to 1 (see
Fig. 3(e)). However, this comes at the expense of a reduction
in the code rate, i.e., the storage overhead is increased. In
the example, k − τ − 1 = 3 Class B parity nodes need to
be introduced, which reduces the code rate from R = 5/7 to
R = 5/10 = 1/2. If a lower storage overhead is required,
Class B parity nodes can be punctured, starting from the
last parity node (for the example, nodes PB

9 , PB
8 , and PB

7

are punctured in this order), at the expense of an increased
repair bandwidth. If all Class B parity nodes are punctured,
we would remain only with Class A parity nodes and the
repair bandwidth corresponds to that of the Class A code.
Thus, our code construction gives a family of rate-compatible
codes which trades off between repair bandwidth and storage
overhead: adding more Class B nodes reduces the repair
bandwidth but increases the storage overhead.

C. Repair of a Single Node Failure: Decoding Schedule
The repair of a failed systematic node, proceeds as follows.

First, τ + 1 symbols are repaired using Class A parity nodes.
Then, the remaining symbols are repaired using Class B parity
nodes. With a slight abuse of language, we will refer to the
repair of symbols using Class A and Class B parity nodes
as the decoding of Class A and Class B codes, respectively.
Suppose that node j fails. Decoding is as follows.
• Decoding of Class A code. To reconstruct the failed data

symbol in the jth row of the code array, k symbols (k−1



data symbols and pAj,k) in the jth row are read. These
symbols are now cached in the memory. We then read the
τ piggybacked symbols in the jth row. By construction
(see (3)), this allows to repair τ failed symbols, at the
cost of an additional read each.

• Decoding of Class B code. Each remaining failed data
symbol di,j ∈ Qj is obtained by reading a Class B parity
symbol whose corresponding set D̆ (see Definition 5)
contains di,j . In particular, if several Class B parity
symbols pBi′,j′ contain di,j , we read the parity symbol
with largest index j′. This yields the lowest additional
read cost.

V. CODE CHARACTERISTICS AND COMPARISON

In this section we characterize some different properties of
the codes presented in Sections III and IV.

A. Fault Tolerance

The fault tolerance of the Class A code depends on the
MDS code used in its construction and τ , as stated in Theorem
1. Hence, our proposed code has also fault tolerance f ≥
nA − k− τ + 1. Since 1 ≤ τ ≤ nA − k− 1, our codes have a
fault tolerance of at least 2.

B. Normalized Repair Bandwidth

According to Section IV-C, to repair the first τ +1 symbols
in a failed node requires that k − 1 data symbols plus τ + 1
Class A parity symbols are read. The remaining k−τ−1 data
symbols in the failed node are repaired by reading the Class B
parity symbols. As seen in Section IV, the parity symbols in
the first Class B parity node are constructed from sets of data
symbols of cardinality |Qj |= k − τ − 1. Therefore, to repair
each of the k − τ − 1 data symbols in this set requires to
read at most k− τ −1 symbols. The remaining Class B parity
nodes are constructed from fewer symbols than k− τ − 1. An
upper bound on the normalized repair bandwidth is therefore
λ < (k + τ + (k − τ − 1)2)/k. It is observed that when τ
increases, the fault tolerance reduces while λ improves.

C. Repair Complexity of a Failed Node

We first consider the complexity of elementary arithmetic
operations of elements of size ν = dlog2 q

pe in Fqp . An
addition requires O(ν) and multiplication requires O(ν2). The
term inside O(·) denotes the number of elementary binary
additions. To repair the first symbol requires k multiplications
and k − 1 additions. To repair the following τ symbols
require an additional τk multiplications and additions. The
final k − τ − 1 symbols require at most k − τ − 2 additions,
since Class B parity symbols are constructed as the sum of at
most k − τ − 1 data symbols. The repair complexity of one
failed node is therefore

CR = O((k − 1)ν + kν2) +O(τk(ν + ν2)) +O((k − τ − 2)2ν).
(11)

The first two terms correspond to the Class A code while the
last term corresponds to the Class B code.

D. Encoding Complexity

The encoding complexity of the (n, k) code, CE, is the sum
of the encoding complexities of the two codes. The generation
of each of the nA − k Class A parity symbols in one row
of the code array, pAi,j in (2), requires k multiplications and
k − 1 additions. Adding data symbols to τ of these parity
symbols according to (3) requires an additional τ additions.
The encoding complexity of the Class A code is therefore

CA = O((nA − k)(kν2 + (k − 1)ν)) +O(τν). (12)

According to Section IV, the parity symbols in the first
Class B parity node are constructed as the sum of k − τ − 1
data symbols, and each parity symbol in the subsequent parity
nodes uses one less data symbol. Therefore, the encoding
complexity of the Class B code is

CB =

n−nA∑
i=1

O((k − τ − 1− i)ν). (13)

Finally, CE = CA + CB.

E. Code Comparison

Table I provides a summary of the characteristics of dif-
ferent codes proposed in the literature as well as the codes
constructed in this paper.4 In the table, column 2 reports the
value of β (see (1)) for each code construction. For our code,
β = k, unlike for MDR and Zigzag codes, for which β
grows exponentially with k. This implies that our codes require
less memory to cache data symbols during repair. The fault
tolerance f , the normalized repair bandwidth λ, the normalized
repair complexity, and the encoding complexity, discussed in
the previous subsections, are reported in columns 3, 4, 5, and
6, respectively.

In Fig. 5, we compare our codes with other codes in the
literature. In particular, the figure plots the normalized repair
complexity of (n, k, f) codes over F28 (ν = 8) versus their
normalized repair bandwidth λ. In contrast to the bounds for
the repair bandwidth and complexity reported in Table I, Fig. 5
contains the exact number of integer additions.

The best codes for a DS system should be the ones that
achieve the lowest repair bandwidth and have the lowest repair
complexity. As seen in Fig. 5, MDS codes have both high
repair complexity and repair bandwidth, but they are optimal
in terms of fault tolerance for a given n and k. Zigzag codes
achieve the same fault tolerance and high repair complexity
as MDS codes, but at the lowest repair bandwidth. At the
other end, LRCs yield the lowest repair complexity but a
higher repair bandwidth and worse fault tolerance than Zigzag
codes. Piggyback codes have a repair bandwidth between
that of Zigzag and MDS codes, but with a higher repair
complexity and worse fault tolerance. For a given storage
overhead, our proposed codes have better repair bandwidth
than MDS codes, Piggyback codes and LRCs, and equal or
similar repair bandwidth than Zigzag codes. Furthermore, they

4The variables t, tr and r in Table I are defined in [7] and [2] respectively.
The definition of ` comes directly from r that is defined in [7].



TABLE I: Comparison of (n, k) codes that aim at reducing repair bandwidth. The repair bandwidth and the repair complexity are normalized per symbol,
while the encoding complexity is given per row in the code array. Note that for MDR codes n = k + 2.

β Fault Tolerance Norm. Repair Band. Norm. Repair Compl. Enc. Complexity

MDS 1 n− k k O((k − 1)ν + kν2) O((n− k)((k − 1)ν) + kν2)

LRC [2] 1 r + 1 k
n−k−r O((d k

n−k−r e − 1)ν) rO((k − 1)ν + kν2) + (n− k − r)O((d k
n−k−r e − 1)ν)

MDR [5] 2k 2 k+1
2

O((k − 1)ν) O((k − 1)ν)

Zigzag [6] (n− k)k−1 n− k n−1
n−k O((k − 1)ν + kν2) O((n− k)((k − 1)ν) + kν2)

Piggyback [7] 2 1 (k−tr)(k+t)+tr(k+tr+`−2)
2k

– –

Proposed Codes k ≥ n−nB−τ+1 <
k+τ+(k−τ−1)2
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Fig. 5: Comparisons of different codes (n, k, f) with ν = 8.

yield lower repair complexity as compared to MDS, Piggyback
and Zigzag codes. However, the benefits in terms of repair
bandwidth and/or repair complexity with respect to MDS and
Zigzag codes come at a price of a lower fault tolerance.

VI. CONCLUSION

In this paper, we constructed a new class of codes that
achieve low repair bandwidth and low repair complexity for
a single node failure. The codes are constructed from two
smaller codes, Class A and B, where the former focuses on
the fault tolerance of the code, and the latter focuses on
reducing the repair bandwidth and complexity. Our proposed
codes achieve better repair complexity than Zigzag codes and
Piggyback codes and better repair bandwidth than LRCs, but at
the cost of slightly lower fault tolerance. A side effect of such a
construction is that the number of symbols per node that needs
to be encoded grows linearly with the code dimension. This
implies that our codes are suitable for memory constrained DS
systems as compared to Zigzag and MDR codes, for which the
number of symbols per node increases exponentially with the
code dimension.

APPENDIX A
PROOF OF THEOREM 1

Each row in the code array contains nA − k − τ parity
symbols based on the MDS construction (i.e., parity symbols

without piggybacks). Using these symbols, one can recover
nA−k−τ data symbols in that row and, thus, nA−k−τ failures
of systematic nodes. In order to prove the theorem, we need
to show that by using piggybacked parity symbols pi,u, i =
0, . . . , k−1, in some parity node, u, it is possible to correct one
arbitrary systematic node failure. To do this, let us consider
the system of linear equations GdT = pT, representing the
set of parity equations to compute pi,us where u = nA− τ . In
other words, d = (d0,0, . . . , d0,k−1, d1,0, . . . , dk−1,k−1), p =
(p0,u, . . . , pk−1,u), and G is given by

G =


a u0 0 0 . . . 0
0 a u1 0 . . . 0
0 0 a u2 . . . 0
...

...
...

...
. . .

...
uk−1 0 0 0 . . . a

 (14)

where a = (α0,u, . . . , αk−1,u), ui is a vector of length k
with one at position i and zeros elsewhere, and 0 is the all-
zero vector of size k. Now, assume a systematic node r has
failed. In order to repair it, we need to solve the following
subsystem of linear equations G′wT = pT, in which w =
(d0,r, . . . , dk−1,r) and G′ is a k × k submatrix of G such
that: a) its diagonal elements are all αr,u; b) it has 1 at row
r and column (r + 1)k; c) all other entries are 0. Note that
G′ is full rank. Therefore, one arbitrary data symbol can be
corrected and, hence, the erasure correcting capability of Class
A code is at least nA− k− τ + 1, which completes the proof.
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