10,804 research outputs found

    An optimal algorithm for certain boundary value problem

    Get PDF
    AbstractThe O(h4) finite-difference scheme for the second derivative u″(x) leads to a coherent pentadiagonal matrix which is factorized into two tridiagonal matrices. This factorization is used to derive an optimal algorithm for solving a linear system of equations with the pentadiagonal matrix. As an application, a nonlinear system of ordinary differential equations is approximated by an O(h4) convergent finite-difference scheme. This scheme is solved by the implicit iterative method applying the algorithm at each iteration. A Mathematica module designed for the purpose of testing and using the method is attached

    Constructive factorization of LPDO in two variables

    Full text link
    We study conditions under which a partial differential operator of arbitrary order nn in two variables or ordinary linear differential operator admits a factorization with a first-order factor on the left. The factorization process consists of solving, recursively, systems of linear equations, subject to certain differential compatibility conditions. In the generic case of partial differential operators one does not have to solve a differential equation. In special degenerate cases, such as ordinary differential, the problem is finally reduced to the solution of some Riccati equation(s). The conditions of factorization are given explicitly for second- and, and an outline is given for the higher-order case.Comment: 16 pages, to be published in Journal "Theor. Math. Phys." (2005

    Composing and Factoring Generalized Green's Operators and Ordinary Boundary Problems

    Full text link
    We consider solution operators of linear ordinary boundary problems with "too many" boundary conditions, which are not always solvable. These generalized Green's operators are a certain kind of generalized inverses of differential operators. We answer the question when the product of two generalized Green's operators is again a generalized Green's operator for the product of the corresponding differential operators and which boundary problem it solves. Moreover, we show that---provided a factorization of the underlying differential operator---a generalized boundary problem can be factored into lower order problems corresponding to a factorization of the respective Green's operators. We illustrate our results by examples using the Maple package IntDiffOp, where the presented algorithms are implemented.Comment: 19 page

    Methods in Mathematica for Solving Ordinary Differential Equations

    Full text link
    An overview of the solution methods for ordinary differential equations in the Mathematica function DSolve is presented.Comment: 13 page

    Invariant Form of BK-factorization and its Applications

    Full text link
    Invariant form of BK-factorization is presented, it is used for factorization of the LPDOs equivalent under gauge transformation and for construction of approximate factorization simplifying numerical simulsations with corresponding LPDEs of higher orderComment: 11 pages, 7 figure

    Factorization of Z-homogeneous polynomials in the First (q)-Weyl Algebra

    Full text link
    We present algorithms to factorize weighted homogeneous elements in the first polynomial Weyl algebra and qq-Weyl algebra, which are both viewed as a Z\mathbb{Z}-graded rings. We show, that factorization of homogeneous polynomials can be almost completely reduced to commutative univariate factorization over the same base field with some additional uncomplicated combinatorial steps. This allows to deduce the complexity of our algorithms in detail. Furthermore, we will show for homogeneous polynomials that irreducibility in the polynomial first Weyl algebra also implies irreducibility in the rational one, which is of interest for practical reasons. We report on our implementation in the computer algebra system \textsc{Singular}. It outperforms for homogeneous polynomials currently available implementations dealing with factorization in the first Weyl algebra both in speed and elegancy of the results.Comment: 26 pages, Singular implementation, 2 algorithms, 1 figure, 2 table
    • …
    corecore