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Abstract 

The O(h 4) finite-difference scheme for the second derivative u"(x) leads to a coherent pentadiagonal matrix which is 
factorized into two tridiagonal matrices. This factorization is used to derive an optimal algorithm for solving a linear 
system of equations with the pentadiagonal matrix. As an application, a nonlinear system of ordinary differential equations 
is approximated by an O(h 4) convergent finite-difference scheme. This scheme is solved by the implicit iterative method 
applying the algorithm at each iteration. A Mathematica module designed for the purpose of testing and using the method 
is attached. 
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1. Introduction 

Let us consider the following system of differential equations: 

d2u 
dx 2 =9(x,u), a<~x<~b, (1) 

with the boundary conditions 

u(a)= Uo, u(b)=  u,+t, 

where u(x) = (u(l)(x), u(2)(x),..., u(P)(x)) is the unknown function, and g(x, u) =(g (1)(x, u), g(2)(x, u), 
. . . ,  9(P)(x, U)), is given. 

This boundary value problem has a unique regular solution if the function g(x, u) is continuous 
and possesses partial derivatives, such that, the Jacobian matrix J(9(1),g(Z),...,g(P)) is nonpositive 
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definite, i.e., 

(j (g~), g(2),..., g(p) )2,  3~ ) ~ O, 

for all 2~-- (~i ,22 , . . . , ,~p) ,  x E ( a , b )  and - -OO<u(q)<oG,  q =  1 , 2 , . . . , p .  
There is a broad literature on numerical solution of  Eq. (1) with either initial value conditions or 

boundary value conditions. The higher-order and stable methods given in [2, 3, 5, 6] are applicable 
to Eq. (1) with initial conditions. When boundary conditions are present, shooting method is used to 
transform boundary conditions into initial conditions. It is, however, expensive in terms o f  arithmetic 
operations because the initial value u~(a) is obtained only after solving an initial value problem. 
Nevertheless, one can use shooting method to refine u ' (a )~  (1 /h) (u(a+h)-u(a) ) ,  where u(a+h) can 
be computed by the algorithm given in this paper. A higher-order method (cf. [2, 3, 5, 6]) for solving 
initial value problems combined with the algorithm and shooting method gives an approximate 
solution of  the boundary problem O(hP), (p~>6)  accurate. 

We shall approximate the system of  Eq. (1) by the following finite-difference scheme with the 
global error O(h 4) (cf. [1, 7]): 

--Lhvi=g(xi, vi), i =  1 ,2 , . . . , n ,  
(2) 

1) 0 z blo, Un+l z Hn+l 

where vi -- v(x~), x~ = a + ih, i -- 0, 1 . . . .  , n + 1, h = (b - a)/(n + 1 ), and the finite-difference operator 
Lh is given by 

Vi 1 --  2Vi Jr- ~)i+1 
h2 , i =  1,n, 

LhVi---- --Vi-2 + 16Vi_~ -- 30Vi + 16Vi+l -- Vi+2 i----2,3, ,n -- 1. 
12h 2 ""  

Let us write the finite-difference scheme (2) in matrix form as 

A v = f ( v ) ,  (3) 

where v=(v ' , v2 , . . . , vP)  v, with v(q)=(u{q),v(;),...,V(nq)), f=( f (1) , f (2 ) , . . . , f (p ) ) ,  with f(q)= 
(fl(q), f2(q),... ,L(q)), q = 1 ,2 , . . . ,  p, and 

H0 g(q)(xi, Vi) + if  i = 1, 
h ~- 

g(q)(xi, Di) Uo if  i = 2, 
12h z 

f (q)= 12h z g(q)(xi, l)i) if  i = 3 , 4 , . . . , n  - 2, 

g(q)(xi, Vi) Un+l if  i = n -- 1, 
12h 2 
Un+l 

9(q)(xi, vi) + if  i = n .  h-- i-  
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The  ma t r i x  A is a b l o c k  d i a g o n a l  m a t r i x  o f  the  fo rm A = d i a g o n a l ( M ) ,  w h e r e  M is the  pen ta -  

d i a g o n a l  m a t r i x  

24 

- 1 6  

1 

M =  0 

0 

0 

- 1 2  0 0 0 0 . . .  

30 - 1 6  1 0 0 - . .  

- 1 6  30 - 1 6  1 0 . .  

1 - 1 6  30 - 1 6  1 . .  

: : • ; • . . .  

0 0 0 0 0 . . .  

0 0 0 0 0 . . -  

0 0 
0 0 
0 0 
0 0 

30 - 1 6  

- 12 24 n×n 

2. F a c t o r i z a t i o n  o f  the  p e n t a g o n a l  m a t r i x  

The  ma t r i x  M sat isf ies  the  f o l l o w i n g  equa l i t y  (cf.  [7]):  

MG = hS, 

w h e r e  

12 0 0 0 

- 1  14 - 1  0 

0 - 1  14 - 1  
S =  

0 0 0 0 

0 0 0 0 

and  G r e e n ' s  m a t r i x  G has  the  ent r ies  

~ ih(1 - j h )  i f  i<~j, 
Gij = 

( j h ( 1  - ih) i f  i> j .  

One  can  c h e c k  that  

MoG = hi, 

w h e r e  I is the  un i t a ry  mat r ix ,  and  

2 - 1  0 0 

- 1  2 - 1  0 

0 - 1  2 - 1  
mo= 

0 0 0 0 

0 0 0 0 

Hence ,  

• . .  0 0 0 -  

- . -  0 0 0 

• . .  0 0 0 

• . .  : . . 

. . . .  1 14 - 1  
• . .  0 0 12 

G _  1 1 = ~Mo. 

• . .  0 0 O 

- - .  0 0 0 

• - .  0 0 0 

• . .  : : : 

. . . .  1 2 - 1  
• . .  0 - 1  2 

(4) 

(5) 
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From (4) and (5), we obtain the following factorization of  the matrix M: 

M = SMo. (6) 

3. An opt imal  a lgor i thm 

The matrix Eq. (3) splits into p decoupled systems of equations of the form 

MtJ (q) = f(q), q = 1,2 . . . . .  p. (7) 

Applying factorization (6), we rewrite the above system as follows: 

S w  (q) _.~ f (q) ,  

Mov ~q)=w ~q), q = l , 2 , . . . , p .  
(8) 

Since both tridiagonal matrices S and M0 are diagonally dominant, each of  the two systems of 
equations in (8), for fixed q, can be successfully solved by the Gaussian elimination• Below, we 
give an algorithm for solving the tridiagonal systems of  equations in (8). The algorithm is optimal 
in terms of  the number of  arithmetic operations as it consists of  8n - 9 operations. We note that 
to solve the corresponding pentadiagonal system in (7), without factorization, there are 1 6 n -  35 
arithmetic operations required• 

The forward elimination applied to the first system of  equations in (8) leads to the following 
upper triangular form of the system: 

1 - 8 ~  0 0 0 0 . . .  0 0 
0 1 -f12 0 0 0 . . .  0 0 
0 0 1 --f13 0 0 " ' "  0 0 

: : : : : : " . .  : : 

0 0 0 0 0 0 . . .  1 - - S n - - I  

0 0 0 0 0 0 . . .  0 1 

w h e r e / ( q ' =  (j~l (q), j~2(q),. . •, /(nq)), 

~(q),  = f l  (q) ~i(q) 7___ ( f (q)  
12 '  

The coefficients 8i are given by 

1 
81 ~---0, 8 i -  14 - f l i - l '  

with 

+ i'q_l)8 , 

the formula 

- wlq) 

W~ q ) 

w~ q) 

Iv(q) n--l 
. W~ q) 

- j~l( q ) 

j~(q) 
3 

f q,, 
_ f,!q) 

i = 2, 3 , . . .  n - 1, l̂fn~q ) = 
' 12 

(9) 

i = 2 , 3 , . . . , n - 1 .  

We notice that the sequence {fit}, as i --+ ~ ,  converges rapidly to the fixed point fl = 7 - 4 v ~  of  
the iteration function 

1 
s ( x ) = 1 4 _ x ,  0~<x~<l. 
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Since, for 0 ~<x ~< 1, 

1 1 
Is '(x)[- ( 1 4 -  x) 2 ~< 13 ~ '  

by the fixed point theorem, we obtain the following error estimate: 

1 7 - 4 x / ~  
I/ e 1- 1/ 1 - 1 6 9 i ,  / = 2 , 3 , . . . , n -  1. 

We can assume that /~=/~ for i>~4, with the accuracy of ( 7 -  4x/~)/1694~8.8,  10 -11. By the 
backward substitution, we find the solution w ~q) to the first system of equations in (8) as follows: 

w ~ q )  ~'(q) ~ fii (q) R -  (q) i = n -- 1, n -- 2, 1 = Jn ' w(q'i) -~ IJivVi+l . . . . . .  

Now, the Gaussian elimination applied to the second system of equations in (8) leads to the reduced 

system of equations of the form (9) with w tq) replaced by v ~q), f~q) replaced by ~q), and/~i replaced 
by 7i. We have 

1 1 i 
- -  _ _  . 

Y l - ~ 2  ' 7 i = 2 - - ~ i _  1 i + 1  i =2,3,  . , n -  1. 

-~lq) W(1 q, -~iq) . (q' "f-"(fq) -- ~ , =(wi + : i - 1 ) T J ,  i = 2 , 3  . . . .  ,n. 

Again, by the backward substitution, we compute the solution Cq) to the decoupled system of 
equations in (8) 

( q )  -7(~ q )  . ( q )  ~--(/q) , .  ( q )  
Vn = . In  ' U i = "~- ~/iVi+l, i = n - 1 ,n  - 2 , . . . ,  1. 

The above algorithm contains 8 n -  9 arithmetic operations. 

4. Implicit iterations 

We shall solve the system of algebraic Eq. (3) using the following implicit iterative method: 

A v  ~m+O =f(v~")), m--0, 1,. . . ,s,  (10) 

where the starting value of v, v ¢°), is given. 
Since A is a block diagonal matrix, the above system splits into p decoupled systems of equations 

M/)(q,m+l) = f(q)(/)(q,m)), q = 1 ,2  . . . .  , p .  (11) 

Because the pentagonal matrix M is monotonic, the iterative method is convergent, (cf. [8, 9]). 
The algorithm for solving (11) is as follows: 
For m =  1,2,. . . ,s,  

(1) set /)=/)(m-l), 
(2) compute f ---- ( f ~ I ) ( v ) ,  f ~ 2 ) ( v ) , . . . ,  f ~ P ) ( v ) ) ,  

(3) solve (8) by the algorithm given in the previous section. 
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5. Numerical examples 

Several systems of  differential equations of  the form (1) have been solved using the algorithm 
with Mathematica. The Mathematica module solveBVP is attached. The module solveBVP takes 
three optional parameters bound, s t a r t v  and i t e r s ,  in addition to the parameters g, p,a,b,  and 
n. The parameter b o u n d  specifies the boundary conditions {u0, Un+l } as a p × 2 array, startv----V (°) 

is a p × n array, and i t e r s - - - - s .  The default values of  the optional parameters are as 
follows: 

bound - -  p × 2 array of  zeros corresponding to the homogeneous boundary conditions, 

s t a r r y  - -  a p × n array of  zeros, 

± t e r s  = 2n .  

Now, we present two examples of  the boundary value problem (1) solved by the method given 
above. 

Example 1. Find the solution of  the equation that represents rotation of a heavy string (cf. [4]) 

d2u  u 

+ 4 ~ - - 0 , x / x ~ u  ~ 0 < x <  1, (12) dx---- S + 

with the boundary value conditions u ( 0 ) =  0, and u(1 ) =  1. 

We consider the partition of  the interval [a, b] = [0, 1] into n = 9 subintervals by n + 1 points. So 
that, p =  1, a = 0 ,  b =  1, n = 9 ,  and the list of  the boundary value conditions {u0,u,+l} = {{0, 1}}. 

To solve Eq. (12), we define the function 

g l [ x _ , u _ ] : =  { u [ [ 1 ] ] / ( 4  S q r t [ x ^ 2 + u [ [ 1 ] ] ' 2 ] ) } ,  

and call the module 

solveBVP [gl, I, O, i, 9, bound->{{O, I}}] . 

In Table 1, we present numerical results. 
One can easily find the interpolating polynomial 

P(x)  = 1.09093x - 0.092147x 2 + 0.001197X 3 --  0 . 0 0 0 0 1 5 5 X  4 -k- 0.00013 lX 5 

-- 0.000239x 6 + 0.000293x 7 -- 0.0002295x s + 0.0001044x 9 -- 0.0000209x 1°, 

through the data points given in Table 1 using Mathematica. This polynomial is the approximate 
solution that satisfies the Eq. (12) in the interval (0,1), with the residual error less than 10 -5. 
Because the finite difference scheme (2) is O(h 4) convergent, the global error u ( x ) -  P ( x ) ~ O ( h 4 ) ,  
when 0 < x < l .  
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Table 1 

x v(x) 

0 0 
0.1 0.108172 
0.2 0.214509 
0.3 0.319017 
0.4 0.421704 
0.5 0.522577 
0.6 0.621644 
0.7 0.718912 
0.8 0.814389 
0.9 0.908082 
1 1 

E x a m p l e  2. Find the solution o f  the system o f  two nonlinear equations that represent the equilibrium 
state o f  a rotating rod (cf. [4]). 

dZu O) 
- sin u(Z)(x), 

dx 2 
d2u c) (13) 

- -  U( I ) (x )COSU(2) (X) ,  O < X <  1, 
dx 2 

with the nonhomogeneous  boundary value conditions 

u(1)(O)=O, u ( l ) ( 1 )=  1, U(2)(O)=O, u(2)(l) -~ l. 

In this example,  we define the function 

g2[x  ,u ] := { - S i n  [u [ [2] ] ] , -u  [ [1] ] *Cos [u [ [2] ] ] } 

and execute the com m and  

solveBVP [g2,2, O, i, 9, bound->{{O, I}, {0, i}}] . 

The numerical  results are given in Table 2 
The interpolating polynomials  

P(x) : 0.854845x + 0.0000458x 2 + 0.144202x 3 + 0.0052374x 4 - 0.0191007x 5 

÷ 0.0507075x 6 - 0.0794568x 7 ÷ 0.0738018x 8 - 0.0392807x 9 ÷ 0.0089985x 1° 

and 

Q(x) = 0.869691x ÷ 0.0006005x 2 + 0.137016x 3 + 0.0301239x 4 - 0.114618x 5 

÷ 0.240532x 6 - 0.356843x 7 + 0.323749x 8 - 0.168064x 9 ÷ 0.0378118x l°, 

correspond to data x, v 1, v2 in Table 2. One can check with use o f  Mathematica that these polyno-  
mials satisfy equilibrium equations in the interval (0, 1 ), with the residual error less than 10 -4. So 
that, the global errors u(1)(x)- P ( x ) =  O(h4), and u(2)(x)- Q(x)=O(h4).  
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Table 2 

x vl v2 

0 0 0 
0.1 0.0856296 0.0871142 
0.2 0.172129 0.175081 
0.3 0.260371 0.264742 
0.4 0.351229 0.356912 
0.5 0.445582 0.452367 
0.6 0.544304 0.551823 
0.7 0.648268 0.655904 
0.8 0.758329 0.765108 
0.9 0.875311 0.879765 
1 1 1 

Mathematica module solveBVP. 

Options[solveBVP] = {bound -> homogeneous, 

starry -> vzero, 

iters -> twon}; 

solveBVP[g_, p_, a_, b_, n_, opts___]:= Module[ 

{ h, x, boundary, vO, iterNumber, beta, g~mma, solution, 

bcorrections, useboundary, solve3, solve5, oneStep }, 

h = (b-a)/(n+l) ; 

x = Table [ N[a + i hi, {i, I, n}]; 

homogeneous = Table[O, {p}, {2}] ; 

vzero = Table [0, {p}, {n}] ; 

twon = 2n; 

boundary=bound/.{opts}/.Options[solveBVP]; 

vO=startv/.{opts}/.Options[solveBVP]; 
iterNumber = iters/.{opts}/.Options[solveBVP]; 

beta={O} ; 

Do [AppendTo [beta, i/(14-Last [beta] ) ], {3}] ; 

Do [AppendTo [beta, N[7 - 4 Sqrt[3]] ], {n-3}]; 

gamma=Table[i/(i+l), {i, i, n}]; 

bcorrections=Table [{{12 *h'2 *boundary [ [q, i] ] , - h^2*boundary [ [q, I] ] }, 

{-h'2*boundary [ [q, 2] ] , 12*h^2*boundary [ [q, 2] ] }}/h^2, 

{q, i ,p}] ; 

useboundary[f_, bcorr_] :: 

Join[Take[f,2] + bcorr[[l]], Take[f, {3,-3}], Take[f,-2] + bcorr[[2]]]; 
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solve3[f_, dll_, alpha_I:= Module[{ fl, sol }, 

f l  [1]=f [ [ 1 ] ] / a l l ;  
f111_1 :=fl [i]=(f [[i]]+fl [i-l])*alpha[[i]] ; 
sol [n] =If [dll==12 , f[[n]]/12, fl[n]]; 
sol[i_] :=sol[i] =fl [i]+alpha[[i]]*sol[i+l] ; 

Table [sol [i], {i, 1 ,n}] ] ; 

solve5 If_] : =With [ 
{w= solve3[f, 12, beta]}, 
solve3[w, 2, g~mma] ]; 

oneStep[v_] :=Module[ {ff, bff}, 
ff=12*h^2* N [Transpose [MapThread [g, {x, Transpose [v] }] ] ] ; 
bff=MapThread[useboundary, {ff, bcorrections}] ; 
Map[solve5, bff] ]; 

solution = Nest[oneStep, vO, iterNumber]; 

PrependTo[solution, x] ; 
With[ { header = Prepend [Table [Subscripted [v[i]], {i,l,p}], "x"], 

asol= Prepend[Table [boundary [ [q, I] ] , {q, 1 ,p}] , a] , 
bsol= Prepend [Table [boundary [ [q,2] ] , {q, l,p}] , b] }, 

TableForm [Join [{header}, {asol}, Transpose [solution] , {bsol}] ] ] . 
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