3,533 research outputs found

    Power Management Techniques for Data Centers: A Survey

    Full text link
    With growing use of internet and exponential growth in amount of data to be stored and processed (known as 'big data'), the size of data centers has greatly increased. This, however, has resulted in significant increase in the power consumption of the data centers. For this reason, managing power consumption of data centers has become essential. In this paper, we highlight the need of achieving energy efficiency in data centers and survey several recent architectural techniques designed for power management of data centers. We also present a classification of these techniques based on their characteristics. This paper aims to provide insights into the techniques for improving energy efficiency of data centers and encourage the designers to invent novel solutions for managing the large power dissipation of data centers.Comment: Keywords: Data Centers, Power Management, Low-power Design, Energy Efficiency, Green Computing, DVFS, Server Consolidatio

    Toward sustainable data centers: a comprehensive energy management strategy

    Get PDF
    Data centers are major contributors to the emission of carbon dioxide to the atmosphere, and this contribution is expected to increase in the following years. This has encouraged the development of techniques to reduce the energy consumption and the environmental footprint of data centers. Whereas some of these techniques have succeeded to reduce the energy consumption of the hardware equipment of data centers (including IT, cooling, and power supply systems), we claim that sustainable data centers will be only possible if the problem is faced by means of a holistic approach that includes not only the aforementioned techniques but also intelligent and unifying solutions that enable a synergistic and energy-aware management of data centers. In this paper, we propose a comprehensive strategy to reduce the carbon footprint of data centers that uses the energy as a driver of their management procedures. In addition, we present a holistic management architecture for sustainable data centers that implements the aforementioned strategy, and we propose design guidelines to accomplish each step of the proposed strategy, referring to related achievements and enumerating the main challenges that must be still solved.Peer ReviewedPostprint (author's final draft

    Joint Energy Efficient and QoS-aware Path Allocation and VNF Placement for Service Function Chaining

    Full text link
    Service Function Chaining (SFC) allows the forwarding of a traffic flow along a chain of Virtual Network Functions (VNFs, e.g., IDS, firewall, and NAT). Software Defined Networking (SDN) solutions can be used to support SFC reducing the management complexity and the operational costs. One of the most critical issues for the service and network providers is the reduction of energy consumption, which should be achieved without impact to the quality of services. In this paper, we propose a novel resource (re)allocation architecture which enables energy-aware SFC for SDN-based networks. To this end, we model the problems of VNF placement, allocation of VNFs to flows, and flow routing as optimization problems. Thereafter, heuristic algorithms are proposed for the different optimization problems, in order find near-optimal solutions in acceptable times. The performance of the proposed algorithms are numerically evaluated over a real-world topology and various network traffic patterns. The results confirm that the proposed heuristic algorithms provide near optimal solutions while their execution time is applicable for real-life networks.Comment: Extended version of submitted paper - v7 - July 201

    Climbing Up Cloud Nine: Performance Enhancement Techniques for Cloud Computing Environments

    Get PDF
    With the transformation of cloud computing technologies from an attractive trend to a business reality, the need is more pressing than ever for efficient cloud service management tools and techniques. As cloud technologies continue to mature, the service model, resource allocation methodologies, energy efficiency models and general service management schemes are not yet saturated. The burden of making this all tick perfectly falls on cloud providers. Surely, economy of scale revenues and leveraging existing infrastructure and giant workforce are there as positives, but it is far from straightforward operation from that point. Performance and service delivery will still depend on the providers’ algorithms and policies which affect all operational areas. With that in mind, this thesis tackles a set of the more critical challenges faced by cloud providers with the purpose of enhancing cloud service performance and saving on providers’ cost. This is done by exploring innovative resource allocation techniques and developing novel tools and methodologies in the context of cloud resource management, power efficiency, high availability and solution evaluation. Optimal and suboptimal solutions to the resource allocation problem in cloud data centers from both the computational and the network sides are proposed. Next, a deep dive into the energy efficiency challenge in cloud data centers is presented. Consolidation-based and non-consolidation-based solutions containing a novel dynamic virtual machine idleness prediction technique are proposed and evaluated. An investigation of the problem of simulating cloud environments follows. Available simulation solutions are comprehensively evaluated and a novel design framework for cloud simulators covering multiple variations of the problem is presented. Moreover, the challenge of evaluating cloud resource management solutions performance in terms of high availability is addressed. An extensive framework is introduced to design high availability-aware cloud simulators and a prominent cloud simulator (GreenCloud) is extended to implement it. Finally, real cloud application scenarios evaluation is demonstrated using the new tool. The primary argument made in this thesis is that the proposed resource allocation and simulation techniques can serve as basis for effective solutions that mitigate performance and cost challenges faced by cloud providers pertaining to resource utilization, energy efficiency, and client satisfaction
    • …
    corecore