4 research outputs found

    Real-time biped character stepping

    Get PDF
    PhD ThesisA rudimentary biped activity that is essential in interactive evirtual worlds, such as video-games and training simulations, is stepping. For example, stepping is fundamental in everyday terrestrial activities that include walking and balance recovery. Therefore an effective 3D stepping control algorithm that is computationally fast and easy to implement is extremely valuable and important to character animation research. This thesis focuses on generating real-time controllable stepping motions on-the-fly without key-framed data that are responsive and robust (e.g.,can remain upright and balanced under a variety of conditions, such as pushes and dynami- cally changing terrain). In our approach, we control the character’s direction and speed by means of varying the stepposition and duration. Our lightweight stepping model is used to create coordinated full-body motions, which produce directable steps to guide the character with specific goals (e.g., following a particular path while placing feet at viable locations). We also create protective steps in response to random disturbances (e.g., pushes). Whereby, the system automatically calculates where and when to place the foot to remedy the disruption. In conclusion, the inverted pendulum has a number of limitations that we address and resolve to produce an improved lightweight technique that provides better control and stability using approximate feature enhancements, for instance, ankle-torque and elongated-body

    Motion capture based motion analysis and motion synthesis for human-like character animation.

    Get PDF
    Motion capture technology is recognised as a standard tool in the computer animation pipeline. It provides detailed movement for animators; however, it also introduces problems and brings concerns for creating realistic and convincing motion for character animation. In this thesis, the post-processing techniques are investigated that result in realistic motion generation. Anumber of techniques are introduced that are able to improve the quality of generated motion from motion capture data, especially when integrating motion transitions from different motion clips. The presented motion data reconstruction technique is able to build convincing realistic transitions from existing motion database, and overcome the inconsistencies introduced by traditional motion blending techniques. It also provides a method for animators to re-use motion data more efficiently. Along with the development of motion data transition reconstruction, the motion capture data mapping technique was investigated for skeletal movement estimation. The per-frame based method provides animators with a real-time and accurate solution for a key post-processing technique. Although motion capture systems capture physically-based motion for character animation, no physical information is included in the motion capture data file. Using the knowledge of biomechanics and robotics, the relevant information for the captured performer are able to be abstracted and a mathematical-physical model are able to be constructed; such information is then applied for physics-based motion data correction whenever the motion data is edited
    corecore