1,131 research outputs found

    COST Action IC 1402 ArVI: Runtime Verification Beyond Monitoring -- Activity Report of Working Group 1

    Full text link
    This report presents the activities of the first working group of the COST Action ArVI, Runtime Verification beyond Monitoring. The report aims to provide an overview of some of the major core aspects involved in Runtime Verification. Runtime Verification is the field of research dedicated to the analysis of system executions. It is often seen as a discipline that studies how a system run satisfies or violates correctness properties. The report exposes a taxonomy of Runtime Verification (RV) presenting the terminology involved with the main concepts of the field. The report also develops the concept of instrumentation, the various ways to instrument systems, and the fundamental role of instrumentation in designing an RV framework. We also discuss how RV interplays with other verification techniques such as model-checking, deductive verification, model learning, testing, and runtime assertion checking. Finally, we propose challenges in monitoring quantitative and statistical data beyond detecting property violation

    Automatic verification of multi-threaded programs by inference of rely-guarantee specifications

    Get PDF
    Ministry of Education, Singapore under its Academic Research Funding Tier 2; National Research Foundation (NRF) Singapor

    On Models and Code:A Unified Approach to Support Large-Scale Deductive Program Verification

    Get PDF
    Despite the substantial progress in the area of deductive program verification over the last years, it still remains a challenge to use deductive verification on large-scale industrial applications. In this abstract, I analyse why this is case, and I argue that in order to solve this, we need to soften the border between models and code. This has two important advantages: (1) it would make it easier to reason about high-level behaviour of programs, using deductive verification, and (2) it would allow to reason about incomplete applications during the development process. I discuss how the first steps towards this goal are supported by verification techniques within the VerCors project, and I will sketch the future steps that are necessary to realise this goal

    Automating Deductive Verification for Weak-Memory Programs

    Full text link
    Writing correct programs for weak memory models such as the C11 memory model is challenging because of the weak consistency guarantees these models provide. The first program logics for the verification of such programs have recently been proposed, but their usage has been limited thus far to manual proofs. Automating proofs in these logics via first-order solvers is non-trivial, due to reasoning features such as higher-order assertions, modalities and rich permission resources. In this paper, we provide the first implementation of a weak memory program logic using existing deductive verification tools. We tackle three recent program logics: Relaxed Separation Logic and two forms of Fenced Separation Logic, and show how these can be encoded using the Viper verification infrastructure. In doing so, we illustrate several novel encoding techniques which could be employed for other logics. Our work is implemented, and has been evaluated on examples from existing papers as well as the Facebook open-source Folly library.Comment: Extended version of TACAS 2018 publicatio

    Aspects of Java program verification

    Get PDF
    • …
    corecore