11,222 research outputs found

    Efficient Web Usage Mining Process for Sequential Patterns

    Full text link
    The tremendous growth in volume of web usage data results in the boost of web mining research with focus on discovering potentially useful knowledge from web usage data. This paper presents a new web usage mining process for finding sequential patterns in web usage data which can be used for predicting the possible next move in browsing sessions for web personalization. This process consists of three main stages: preprocessing web access sequences from the web server log, mining preprocessed web log access sequences by a tree-based algorithm, and predicting web access sequences by using a dynamic clustering-based model. It is designed based on the integration of the dynamic clustering-based Markov model with the Pre-Order Linked WAP-Tree Mining (PLWAP) algorithm to enhance mining performance. The proposed mining process is verified by experiments with promising results

    Generating dynamic higher-order Markov models in web usage mining

    Get PDF
    Markov models have been widely used for modelling users’ web navigation behaviour. In previous work we have presented a dynamic clustering-based Markov model that accurately represents second-order transition probabilities given by a collection of navigation sessions. Herein, we propose a generalisation of the method that takes into account higher-order conditional probabilities. The method makes use of the state cloning concept together with a clustering technique to separate the navigation paths that reveal differences in the conditional probabilities. We report on experiments conducted with three real world data sets. The results show that some pages require a long history to understand the users choice of link, while others require only a short history. We also show that the number of additional states induced by the method can be controlled through a probability threshold parameter

    Rough Sets Clustering and Markov model for Web Access Prediction

    Get PDF
    Discovering user access patterns from web access log is increasing the importance of information to build up adaptive web server according to the individual user’s behavior. The variety of user behaviors on accessing information also grows, which has a great impact on the network utilization. In this paper, we present a rough set clustering to cluster web transactions from web access logs and using Markov model for next access prediction. Using this approach, users can effectively mine web log records to discover and predict access patterns. We perform experiments using real web trace logs collected from www.dusit.ac.th servers. In order to improve its prediction ration, the model includes a rough sets scheme in which search similarity measure to compute the similarity between two sequences using upper approximation

    Web Site Personalization based on Link Analysis and Navigational Patterns

    Get PDF
    The continuous growth in the size and use of the World Wide Web imposes new methods of design and development of on-line information services. The need for predicting the users’ needs in order to improve the usability and user retention of a web site is more than evident and can be addressed by personalizing it. Recommendation algorithms aim at proposing “next” pages to users based on their current visit and the past users’ navigational patterns. In the vast majority of related algorithms, however, only the usage data are used to produce recommendations, disregarding the structural properties of the web graph. Thus important – in terms of PageRank authority score – pages may be underrated. In this work we present UPR, a PageRank-style algorithm which combines usage data and link analysis techniques for assigning probabilities to the web pages based on their importance in the web site’s navigational graph. We propose the application of a localized version of UPR (l-UPR) to personalized navigational sub-graphs for online web page ranking and recommendation. Moreover, we propose a hybrid probabilistic predictive model based on Markov models and link analysis for assigning prior probabilities in a hybrid probabilistic model. We prove, through experimentation, that this approach results in more objective and representative predictions than the ones produced from the pure usage-based approaches

    Survey of data mining approaches to user modeling for adaptive hypermedia

    Get PDF
    The ability of an adaptive hypermedia system to create tailored environments depends mainly on the amount and accuracy of information stored in each user model. Some of the difficulties that user modeling faces are the amount of data available to create user models, the adequacy of the data, the noise within that data, and the necessity of capturing the imprecise nature of human behavior. Data mining and machine learning techniques have the ability to handle large amounts of data and to process uncertainty. These characteristics make these techniques suitable for automatic generation of user models that simulate human decision making. This paper surveys different data mining techniques that can be used to efficiently and accurately capture user behavior. The paper also presents guidelines that show which techniques may be used more efficiently according to the task implemented by the applicatio

    Sequence Modelling For Analysing Student Interaction with Educational Systems

    Full text link
    The analysis of log data generated by online educational systems is an important task for improving the systems, and furthering our knowledge of how students learn. This paper uses previously unseen log data from Edulab, the largest provider of digital learning for mathematics in Denmark, to analyse the sessions of its users, where 1.08 million student sessions are extracted from a subset of their data. We propose to model students as a distribution of different underlying student behaviours, where the sequence of actions from each session belongs to an underlying student behaviour. We model student behaviour as Markov chains, such that a student is modelled as a distribution of Markov chains, which are estimated using a modified k-means clustering algorithm. The resulting Markov chains are readily interpretable, and in a qualitative analysis around 125,000 student sessions are identified as exhibiting unproductive student behaviour. Based on our results this student representation is promising, especially for educational systems offering many different learning usages, and offers an alternative to common approaches like modelling student behaviour as a single Markov chain often done in the literature.Comment: The 10th International Conference on Educational Data Mining 201
    corecore