3 research outputs found

    Real time handwriting recognition system using CNN algorithms

    Get PDF
    Abstract— The growing use of digital technologies across various sectors and daily activities has made handwriting recognition a popular research topic. Despite the continued relevance of handwriting, people still require the conversion of handwritten copies into digital versions that can be stored and shared digitally. Handwriting recognition involves the computer's strength to identify and understand legible handwriting input data from various sources, including document, photo-graphs and others. Handwriting recognition pose a complexity challenge due to the diversity in handwriting styles among different individuals especially in real time applications. In this paper, an automatic system was designed to handwriting recognition using the recent artificial intelligent algorithms, the conventional neural network (CNN). Different CNN models were tested and modified to produce a system has two important features high performance accuracy and less testing time. These features are the most important factors for real time applications. The experimental results were conducted on a dataset includes over 400,000 handwritten names; the best performance accuracy results were 99.8% for SqueezeNet model

    Visual and Camera Sensors

    Get PDF
    This book includes 13 papers published in Special Issue ("Visual and Camera Sensors") of the journal Sensors. The goal of this Special Issue was to invite high-quality, state-of-the-art research papers dealing with challenging issues in visual and camera sensors

    A Dual Neural Architecture Combined SqueezeNet with OctConv for LiDAR Data Classification

    No full text
    Light detection and ranging (LiDAR) is a frequently used technique of data acquisition and it is widely used in diverse practical applications. In recent years, deep convolutional neural networks (CNNs) have shown their effectiveness for LiDAR-derived rasterized digital surface models (LiDAR-DSM) data classification. However, many excellent CNNs have too many parameters due to depth and complexity. Meanwhile, traditional CNNs have spatial redundancy because different convolution kernels scan and store information independently. SqueezeNet replaces a part of 3 × 3 convolution kernels in CNNs with 1 × 1 convolution kernels, decomposes the original one convolution layer into two layers, and encapsulates them into a Fire module. This structure can reduce the parameters of network. Octave Convolution (OctConv) pools some feature maps firstly and stores them separately from the feature maps with the original size. It can reduce spatial redundancy by sharing information between the two groups. In this article, in order to improve the accuracy and efficiency of the network simultaneously, Fire modules of SqueezeNet are used to replace the traditional convolution layers in OctConv to form a new dual neural architecture: OctSqueezeNet. Our experiments, conducted using two well-known LiDAR datasets and several classical state-of-the-art classification methods, revealed that our proposed classification approach based on OctSqueezeNet is able to provide competitive advantages in terms of both classification accuracy and computational amount
    corecore