7,785 research outputs found

    Doodle to Search: Practical Zero-Shot Sketch-based Image Retrieval

    Get PDF
    In this paper, we investigate the problem of zero-shot sketch-based image retrieval (ZS-SBIR), where human sketches are used as queries to conduct retrieval of photos from unseen categories. We importantly advance prior arts by proposing a novel ZS-SBIR scenario that represents a firm step forward in its practical application. The new setting uniquely recognizes two important yet often neglected challenges of practical ZS-SBIR, (i) the large domain gap between amateur sketch and photo, and (ii) the necessity for moving towards large-scale retrieval. We first contribute to the community a novel ZS-SBIR dataset, QuickDraw-Extended, that consists of 330,000 sketches and 204,000 photos spanning across 110 categories. Highly abstract amateur human sketches are purposefully sourced to maximize the domain gap, instead of ones included in existing datasets that can often be semi-photorealistic. We then formulate a ZS-SBIR framework to jointly model sketches and photos into a common embedding space. A novel strategy to mine the mutual information among domains is specifically engineered to alleviate the domain gap. External semantic knowledge is further embedded to aid semantic transfer. We show that, rather surprisingly, retrieval performance significantly outperforms that of state-of-the-art on existing datasets that can already be achieved using a reduced version of our model. We further demonstrate the superior performance of our full model by comparing with a number of alternatives on the newly proposed dataset. The new dataset, plus all training and testing code of our model, will be publicly released to facilitate future researchComment: Oral paper in CVPR 201

    Zero-Shot Visual Recognition using Semantics-Preserving Adversarial Embedding Networks

    Full text link
    We propose a novel framework called Semantics-Preserving Adversarial Embedding Network (SP-AEN) for zero-shot visual recognition (ZSL), where test images and their classes are both unseen during training. SP-AEN aims to tackle the inherent problem --- semantic loss --- in the prevailing family of embedding-based ZSL, where some semantics would be discarded during training if they are non-discriminative for training classes, but could become critical for recognizing test classes. Specifically, SP-AEN prevents the semantic loss by introducing an independent visual-to-semantic space embedder which disentangles the semantic space into two subspaces for the two arguably conflicting objectives: classification and reconstruction. Through adversarial learning of the two subspaces, SP-AEN can transfer the semantics from the reconstructive subspace to the discriminative one, accomplishing the improved zero-shot recognition of unseen classes. Comparing with prior works, SP-AEN can not only improve classification but also generate photo-realistic images, demonstrating the effectiveness of semantic preservation. On four popular benchmarks: CUB, AWA, SUN and aPY, SP-AEN considerably outperforms other state-of-the-art methods by an absolute performance difference of 12.2\%, 9.3\%, 4.0\%, and 3.6\% in terms of harmonic mean value

    Scene Graph Generation via Conditional Random Fields

    Full text link
    Despite the great success object detection and segmentation models have achieved in recognizing individual objects in images, performance on cognitive tasks such as image caption, semantic image retrieval, and visual QA is far from satisfactory. To achieve better performance on these cognitive tasks, merely recognizing individual object instances is insufficient. Instead, the interactions between object instances need to be captured in order to facilitate reasoning and understanding of the visual scenes in an image. Scene graph, a graph representation of images that captures object instances and their relationships, offers a comprehensive understanding of an image. However, existing techniques on scene graph generation fail to distinguish subjects and objects in the visual scenes of images and thus do not perform well with real-world datasets where exist ambiguous object instances. In this work, we propose a novel scene graph generation model for predicting object instances and its corresponding relationships in an image. Our model, SG-CRF, learns the sequential order of subject and object in a relationship triplet, and the semantic compatibility of object instance nodes and relationship nodes in a scene graph efficiently. Experiments empirically show that SG-CRF outperforms the state-of-the-art methods, on three different datasets, i.e., CLEVR, VRD, and Visual Genome, raising the Recall@100 from 24.99% to 49.95%, from 41.92% to 50.47%, and from 54.69% to 54.77%, respectively
    • …
    corecore