1,471 research outputs found

    Semisupervised Autoencoder for Sentiment Analysis

    Full text link
    In this paper, we investigate the usage of autoencoders in modeling textual data. Traditional autoencoders suffer from at least two aspects: scalability with the high dimensionality of vocabulary size and dealing with task-irrelevant words. We address this problem by introducing supervision via the loss function of autoencoders. In particular, we first train a linear classifier on the labeled data, then define a loss for the autoencoder with the weights learned from the linear classifier. To reduce the bias brought by one single classifier, we define a posterior probability distribution on the weights of the classifier, and derive the marginalized loss of the autoencoder with Laplace approximation. We show that our choice of loss function can be rationalized from the perspective of Bregman Divergence, which justifies the soundness of our model. We evaluate the effectiveness of our model on six sentiment analysis datasets, and show that our model significantly outperforms all the competing methods with respect to classification accuracy. We also show that our model is able to take advantage of unlabeled dataset and get improved performance. We further show that our model successfully learns highly discriminative feature maps, which explains its superior performance.Comment: To appear in AAAI 201

    Mitigation of Through-Wall Distortions of Frontal Radar Images using Denoising Autoencoders

    Full text link
    Radar images of humans and other concealed objects are considerably distorted by attenuation, refraction and multipath clutter in indoor through-wall environments. While several methods have been proposed for removing target independent static and dynamic clutter, there still remain considerable challenges in mitigating target dependent clutter especially when the knowledge of the exact propagation characteristics or analytical framework is unavailable. In this work we focus on mitigating wall effects using a machine learning based solution -- denoising autoencoders -- that does not require prior information of the wall parameters or room geometry. Instead, the method relies on the availability of a large volume of training radar images gathered in through-wall conditions and the corresponding clean images captured in line-of-sight conditions. During the training phase, the autoencoder learns how to denoise the corrupted through-wall images in order to resemble the free space images. We have validated the performance of the proposed solution for both static and dynamic human subjects. The frontal radar images of static targets are obtained by processing wideband planar array measurement data with two-dimensional array and range processing. The frontal radar images of dynamic targets are simulated using narrowband planar array data processed with two-dimensional array and Doppler processing. In both simulation and measurement processes, we incorporate considerable diversity in the target and propagation conditions. Our experimental results, from both simulation and measurement data, show that the denoised images are considerably more similar to the free-space images when compared to the original through-wall images
    • …
    corecore