12,701 research outputs found

    Probabilistic Counters for Privacy Preserving Data Aggregation

    Full text link
    Probabilistic counters are well known tools often used for space-efficient set cardinality estimation. In this paper we investigate probabilistic counters from the perspective of preserving privacy. We use standard, rigid differential privacy notion. The intuition is that the probabilistic counters do not reveal too much information about individuals, but provide only general information about the population. Thus they can be used safely without violating privacy of individuals. It turned out however that providing a precise, formal analysis of privacy parameters of probabilistic counters is surprisingly difficult and needs advanced techniques and a very careful approach. We demonstrate also that probabilistic counters can be used as a privacy protecion mechanism without any extra randomization. That is, the inherit randomization from the protocol is sufficient for protecting privacy, even if the probabilistic counter is used many times. In particular we present a specific privacy-preserving data aggregation protocol based on a probabilistic counter. Our results can be used for example in performing distributed surveys

    Masquerade: Verifiable Multi-Party Aggregation with Secure Multiplicative Commitments

    Get PDF
    In crowd-sourced data aggregation, participants share their data points with curators. However, the lack of privacy guarantees may discourage participation, which motivates the need for privacy-preserving aggregation protocols. Unfortunately, existing solutions do not support public auditing without revealing the participants\u27 data. In real-world applications, there is a need for public verifiability (i.e., verifying the protocol correctness) while preserving the privacy of the participants\u27 inputs since the participants do not always trust the data curator. Likewise, public distributed ledgers (e.g., blockchains) provide public auditing but may reveal sensitive information. We present Masquerade, a novel protocol for computing private statistics, such as sum, average, and histograms without revealing anything about participants\u27 data. We propose a tailored multiplicative commitment scheme to ensure the integrity of data aggregations and publish all the participants\u27 commitments on a ledger to provide public verifiability. We complement our methodology with two zero-knowledge proof protocols that detect potentially untrusted participants who attempt to poison the aggregation results. Thus, Masquerade ensures the validity of shared data points before being aggregated, enabling a broad range of numerical and categorical studies. In our experiments, we evaluate our protocol\u27s runtime and communication overhead using homomorphic ciphertexts and commitments for a variable number of participants

    Efficient Secure Aggregation for Privacy-Preserving Federated Machine Learning

    Full text link
    Federated learning introduces a novel approach to training machine learning (ML) models on distributed data while preserving user's data privacy. This is done by distributing the model to clients to perform training on their local data and computing the final model at a central server. To prevent any data leakage from the local model updates, various works with focus on secure aggregation for privacy preserving federated learning have been proposed. Despite their merits, most of the existing protocols still incur high communication and computation overhead on the participating entities and might not be optimized to efficiently handle the large update vectors for ML models. In this paper, we present E-seaML, a novel secure aggregation protocol with high communication and computation efficiency. E-seaML only requires one round of communication in the aggregation phase and it is up to 318x and 1224x faster for the user and the server (respectively) as compared to its most efficient counterpart. E-seaML also allows for efficiently verifying the integrity of the final model by allowing the aggregation server to generate a proof of honest aggregation for the participating users. This high efficiency and versatility is achieved by extending (and weakening) the assumption of the existing works on the set of honest parties (i.e., users) to a set of assisting nodes. Therefore, we assume a set of assisting nodes which assist the aggregation server in the aggregation process. We also discuss, given the minimal computation and communication overhead on the assisting nodes, how one could assume a set of rotating users to as assisting nodes in each iteration. We provide the open-sourced implementation of E-seaML for public verifiability and testing

    Secure and Privacy-Preserving Data Aggregation Protocols for Wireless Sensor Networks

    Get PDF
    This chapter discusses the need of security and privacy protection mechanisms in aggregation protocols used in wireless sensor networks (WSN). It presents a comprehensive state of the art discussion on the various privacy protection mechanisms used in WSNs and particularly focuses on the CPDA protocols proposed by He et al. (INFOCOM 2007). It identifies a security vulnerability in the CPDA protocol and proposes a mechanism to plug that vulnerability. To demonstrate the need of security in aggregation process, the chapter further presents various threats in WSN aggregation mechanisms. A large number of existing protocols for secure aggregation in WSN are discussed briefly and a protocol is proposed for secure aggregation which can detect false data injected by malicious nodes in a WSN. The performance of the protocol is also presented. The chapter concludes while highlighting some future directions of research in secure data aggregation in WSNs.Comment: 32 pages, 7 figures, 3 table

    PrivFL: Practical Privacy-preserving Federated Regressions on High-dimensional Data over Mobile Networks

    Full text link
    Federated Learning (FL) enables a large number of users to jointly learn a shared machine learning (ML) model, coordinated by a centralized server, where the data is distributed across multiple devices. This approach enables the server or users to train and learn an ML model using gradient descent, while keeping all the training data on users' devices. We consider training an ML model over a mobile network where user dropout is a common phenomenon. Although federated learning was aimed at reducing data privacy risks, the ML model privacy has not received much attention. In this work, we present PrivFL, a privacy-preserving system for training (predictive) linear and logistic regression models and oblivious predictions in the federated setting, while guaranteeing data and model privacy as well as ensuring robustness to users dropping out in the network. We design two privacy-preserving protocols for training linear and logistic regression models based on an additive homomorphic encryption (HE) scheme and an aggregation protocol. Exploiting the training algorithm of federated learning, at the core of our training protocols is a secure multiparty global gradient computation on alive users' data. We analyze the security of our training protocols against semi-honest adversaries. As long as the aggregation protocol is secure under the aggregation privacy game and the additive HE scheme is semantically secure, PrivFL guarantees the users' data privacy against the server, and the server's regression model privacy against the users. We demonstrate the performance of PrivFL on real-world datasets and show its applicability in the federated learning system.Comment: In Proceedings of the 2019 ACM SIGSAC Conference on Cloud Computing Security Workshop (CCSW'19
    • …
    corecore