131 research outputs found

    Enabling event-triggered data plane monitoring

    Get PDF
    We propose a push-based approach to network monitoring that allows the detection, within the dataplane, of traffic aggregates. Notifications from the switch to the controller are sent only if required, avoiding the transmission or processing of unnecessary data. Furthermore, the dataplane iteratively refines the responsible IP prefixes, allowing the controller to receive information with a flexible granularity. We implemented our solution, Elastic Trie, in P4 and for two different FPGA devices. We evaluated it with packet traces from an ISP backbone. Our approach can spot changes in the traffic patterns and detect (with 95% of accuracy) either hierarchical heavy hitters with less than 8KB or superspreaders with less than 300KB of memory, respectively. Additionally, it reduces controller-dataplane communication overheads by up to two orders of magnitude with respect to state-of-the-art solutions

    Anomaly-Based Intrusion Detection by Modeling Probability Distributions of Flow Characteristics

    Get PDF
    In recent years, with the increased use of network communication, the risk of compromising the information has grown immensely. Intrusions have evolved and become more sophisticated. Hence, classical detection systems show poor performance in detecting novel attacks. Although much research has been devoted to improving the performance of intrusion detection systems, few methods can achieve consistently efficient results with the constant changes in network communications. This thesis proposes an intrusion detection system based on modeling distributions of network flow statistics in order to achieve a high detection rate for known and stealthy attacks. The proposed model aggregates the traffic at the IP subnetwork level using a hierarchical heavy hitters algorithm. This aggregated traffic is used to build the distribution of network statistics for the most frequent IPv4 addresses encountered as destination. The obtained probability density functions are learned by the Extreme Learning Machine method which is a single-hidden layer feedforward neural network. In this thesis, different sequential and batch learning strategies are proposed in order to analyze the efficiency of this proposed approach. The performance of the model is evaluated on the ISCX-IDS 2012 dataset consisting of injection attacks, HTTP flooding, DDoS and brute force intrusions. The experimental results of the thesis indicate that the presented method achieves an average detection rate of 91% while having a low misclassification rate of 9%, which is on par with the state-of-the-art approaches using this dataset. In addition, the proposed method can be utilized as a network behavior analysis tool specifically for DDoS mitigation, since it can isolate aggregated IPv4 addresses from the rest of the network traffic, thus supporting filtering out DDoS attacks

    Flow-Aware Elephant Flow Detection for Software-Defined Networks

    Get PDF
    Software-defined networking (SDN) separates the network control plane from the packet forwarding plane, which provides comprehensive network-state visibility for better network management and resilience. Traffic classification, particularly for elephant flow detection, can lead to improved flow control and resource provisioning in SDN networks. Existing elephant flow detection techniques use pre-set thresholds that cannot scale with the changes in the traffic concept and distribution. This paper proposes a flow-aware elephant flow detection applied to SDN. The proposed technique employs two classifiers, each respectively on SDN switches and controller, to achieve accurate elephant flow detection efficiently. Moreover, this technique allows sharing the elephant flow classification tasks between the controller and switches. Hence, most mice flows can be filtered in the switches, thus avoiding the need to send large numbers of classification requests and signaling messages to the controller. Experimental findings reveal that the proposed technique outperforms contemporary methods in terms of the running time, accuracy, F-measure, and recall

    A Survey on Data Plane Programming with P4: Fundamentals, Advances, and Applied Research

    Full text link
    With traditional networking, users can configure control plane protocols to match the specific network configuration, but without the ability to fundamentally change the underlying algorithms. With SDN, the users may provide their own control plane, that can control network devices through their data plane APIs. Programmable data planes allow users to define their own data plane algorithms for network devices including appropriate data plane APIs which may be leveraged by user-defined SDN control. Thus, programmable data planes and SDN offer great flexibility for network customization, be it for specialized, commercial appliances, e.g., in 5G or data center networks, or for rapid prototyping in industrial and academic research. Programming protocol-independent packet processors (P4) has emerged as the currently most widespread abstraction, programming language, and concept for data plane programming. It is developed and standardized by an open community and it is supported by various software and hardware platforms. In this paper, we survey the literature from 2015 to 2020 on data plane programming with P4. Our survey covers 497 references of which 367 are scientific publications. We organize our work into two parts. In the first part, we give an overview of data plane programming models, the programming language, architectures, compilers, targets, and data plane APIs. We also consider research efforts to advance P4 technology. In the second part, we analyze a large body of literature considering P4-based applied research. We categorize 241 research papers into different application domains, summarize their contributions, and extract prototypes, target platforms, and source code availability.Comment: Submitted to IEEE Communications Surveys and Tutorials (COMS) on 2021-01-2
    corecore