12 research outputs found

    Resilient Operation of Heterogeneous Sources in Cooperative DC Microgrids

    Get PDF

    A Robust Consensus Algorithm for Current Sharing and Voltage Regulation in DC Microgrids

    Get PDF
    In this paper a novel distributed control algorithm for current sharing and voltage regulation in Direct Current (DC) microgrids is proposed. The DC microgrid is composed of several Distributed Generation units (DGUs), including Buck converters and current loads. The considered model permits an arbitrary network topology and is affected by unknown load demand and modelling uncertainties. The proposed control strategy exploits a communication network to achieve proportional current sharing using a consensus-like algorithm. Voltage regulation is achieved by constraining the system to a suitable manifold. Two robust control strategies of Sliding Mode (SM) type are developed to reach the desired manifold in a finite time. The proposed control scheme is formally analyzed, proving the achievement of proportional current sharing, while guaranteeing that the weighted average voltage of the microgrid is identical to the weighted average of the voltage references.Comment: 12 page

    Distributed Screening of Hijacking Attacks in DC Microgrids

    Get PDF

    A Distributed Fixed-Time Secondary Controller for DC Microgrid Clusters

    Get PDF

    A Cosine Similarity Based Centralized Protection Scheme for DC Microgrids

    Get PDF
    Unlike the phasor measurement based protection in AC systems, the protection of DC systems deals with complex fault transients which mandates the isolation of the faulted segment within few milliseconds as continued fault current leads to overheating issue in power electronic converters. To this end,several works have been suggested based on unit and nonunit protections for DC microgrids. Threshold selection and protection coordination are the challenges associated with nonunit protection. Similarly, communication delay and link failure limit the application of unit protection. To address these issues, this paper presents a robust centralized protection scheme for DC microgrids, which is resilient to communication delay and link failure. It uses current of each line segment to compute the similarity of current change at both ends of the line segment to derive the protection decision. To overcome the communication failure from one end of the line segment or even from multiple segments, the proposed method uses data from adjacent segments to derive the protection decision correctly. Using PSCAD/EMTDC environment, the performance of the proposed method is evaluated for various cases and compared with available techniques. Finally, the accuracy of the protection algorithm is validated under experimental conditions

    Operation Loss Minimization Targeted Distributed Optimal Control of DC Microgrids

    Get PDF

    Distributed secondary control based on dynamic diffusion algorithm for current sharing and average voltage regulation in DC microgrids

    Get PDF
    This paper introduces a distributed secondary control scheme for achieving current sharing and average voltage regulation objectives in a DC microgrid. The proposed scheme employs a dynamic diffusion algorithm (DDA) instead of the consensus algorithm to enable distributed communication among converters. To help understand DDA, the relation of DDA and other diffusion algorithms is discussed in detail and its superiority is shown by comparison with diffusion and consensus algorithms. Furthermore, considering the discrete nature and different sampling time of the digital controller and communication network, a z-domain model of the entire DC microgrid is established. The influence of communication and secondary control parameters on the system stability is investigated. Based on the established model, the tolerable communication rates are obtained. Real-time simulations conducted on the OPAL-RT platform validate the effectiveness of the proposed scheme, showcasing its advantages in terms of convergence speed and stability

    On Detection of False Data in Cooperative DC Microgrids–A Discordant Element Approach

    Get PDF

    A Stealth Cyber Attack Detection Strategy for DC Microgrids

    Get PDF

    Compromised Controller Design for Current Sharing and Voltage Regulation in DC Microgrid

    Get PDF
    corecore