In this paper a novel distributed control algorithm for current sharing and
voltage regulation in Direct Current (DC) microgrids is proposed. The DC
microgrid is composed of several Distributed Generation units (DGUs), including
Buck converters and current loads. The considered model permits an arbitrary
network topology and is affected by unknown load demand and modelling
uncertainties. The proposed control strategy exploits a communication network
to achieve proportional current sharing using a consensus-like algorithm.
Voltage regulation is achieved by constraining the system to a suitable
manifold. Two robust control strategies of Sliding Mode (SM) type are developed
to reach the desired manifold in a finite time. The proposed control scheme is
formally analyzed, proving the achievement of proportional current sharing,
while guaranteeing that the weighted average voltage of the microgrid is
identical to the weighted average of the voltage references.Comment: 12 page