100,027 research outputs found

    Super-Fast Distributed Algorithms for Metric Facility Location

    Full text link
    This paper presents a distributed O(1)-approximation algorithm, with expected-O(loglogn)O(\log \log n) running time, in the CONGEST\mathcal{CONGEST} model for the metric facility location problem on a size-nn clique network. Though metric facility location has been considered by a number of researchers in low-diameter settings, this is the first sub-logarithmic-round algorithm for the problem that yields an O(1)-approximation in the setting of non-uniform facility opening costs. In order to obtain this result, our paper makes three main technical contributions. First, we show a new lower bound for metric facility location, extending the lower bound of B\u{a}doiu et al. (ICALP 2005) that applies only to the special case of uniform facility opening costs. Next, we demonstrate a reduction of the distributed metric facility location problem to the problem of computing an O(1)-ruling set of an appropriate spanning subgraph. Finally, we present a sub-logarithmic-round (in expectation) algorithm for computing a 2-ruling set in a spanning subgraph of a clique. Our algorithm accomplishes this by using a combination of randomized and deterministic sparsification.Comment: 15 pages, 2 figures. This is the full version of a paper that appeared in ICALP 201

    A Super-Fast Distributed Algorithm for Bipartite Metric Facility Location

    Full text link
    The \textit{facility location} problem consists of a set of \textit{facilities} F\mathcal{F}, a set of \textit{clients} C\mathcal{C}, an \textit{opening cost} fif_i associated with each facility xix_i, and a \textit{connection cost} D(xi,yj)D(x_i,y_j) between each facility xix_i and client yjy_j. The goal is to find a subset of facilities to \textit{open}, and to connect each client to an open facility, so as to minimize the total facility opening costs plus connection costs. This paper presents the first expected-sub-logarithmic-round distributed O(1)-approximation algorithm in the CONGEST\mathcal{CONGEST} model for the \textit{metric} facility location problem on the complete bipartite network with parts F\mathcal{F} and C\mathcal{C}. Our algorithm has an expected running time of O((loglogn)3)O((\log \log n)^3) rounds, where n=F+Cn = |\mathcal{F}| + |\mathcal{C}|. This result can be viewed as a continuation of our recent work (ICALP 2012) in which we presented the first sub-logarithmic-round distributed O(1)-approximation algorithm for metric facility location on a \textit{clique} network. The bipartite setting presents several new challenges not present in the problem on a clique network. We present two new techniques to overcome these challenges. (i) In order to deal with the problem of not being able to choose appropriate probabilities (due to lack of adequate knowledge), we design an algorithm that performs a random walk over a probability space and analyze the progress our algorithm makes as the random walk proceeds. (ii) In order to deal with a problem of quickly disseminating a collection of messages, possibly containing many duplicates, over the bipartite network, we design a probabilistic hashing scheme that delivers all of the messages in expected-O(loglogn)O(\log \log n) rounds.Comment: 22 pages. This is the full version of a paper that appeared in DISC 201

    Approximation algorithms for multi-facility location

    Full text link
    This thesis deals with the development and implementation of efficient algorithms to obtain acceptable solutions for the location of several facilities to serve customer sites. The general version of facility location problem is known to be NP-hard; For locating multiple facilities we use Voronoi diagram of initial facility locations to partition the customer sites into k clusters. On each Voronoi region, solutions for single facility problem is obtained by using both Weizfield\u27s algorithm and Center of Gravity. The customer space is again partitioned by using the newly computed locations. This iteration is continued to obtain a better solution for multi-facility location problem. We call the resulting algorithm: Voronoi driven k-median algorithm ; We report experimental results on several test data that include randomly distributed customers and distinctly clustered customers. The observed results show that the proposed approximation algorithm produces good results

    Parallel Optimization Algorithm for Competitive Facility Location

    Get PDF
    A stochastic search optimization algorithm is developed and applied to solve a bi-objective competitive facility location problem for firm expansion. Parallel versions of the developed algorithm for shared- and distributed-memory parallel computing systems are proposed and experimentally investigated by approximating the Pareto front of the competitive facility location problem of different scope. It is shown that the developed algorithm has advantages against its precursor in the sense of the precision of approximation. It is also shown that the proposed parallel versions of the algorithm have almost linear speed-up when solving competitive facility location problems of different scope reasonable for practical applications

    Distribution Network Configuration Considering Inventory Cost

    Get PDF
    Inter-city distribution network structure is considered as one of which determine the quantity of economic activities in each city. In the field of operations research, several types of optimal facility location problem and algorithms for them have been proposed. Such problems typically minimize the logistic cost with given inter-city transportation cost and facility location cost. But, when we take inventory to coop with fluctuating demands into account, facility size becomes different for each location reflecting the level of uncertainty of demand there. As observed in many developed countries, customers require more variety of commercial goods, and we must prepare more number of commercial goods. Moreover, life length of each product becomes shorter. Without highly organized management, large inventory for many products yield large risk of depreciation of commercial value as well as large cost for floor space for stocking. Considering those, inventory cost should be explicitly considered in distribution network configuration problem. There is an essential trade off between inventory cost and transportation cost: when you set smaller number of distribution center having thicker demands there, relative stock size to coop with fluctuations become small and then, we need less inventory cost. But such concentrated location pattern results longer transportation to the customers and larger transportation cost. Nozick and Turnquist(2001) formulated a two-echelon distribution network formation problem considering inventory cost at plant and distribution centers. They used optimal inventory assignment considering the expected penalty of distribution center stock-out and plant stock-out. Stock-out was considered as the situation when Poisson distributed demand exceeded stock size, and the mean demand there was given by optimal facility location model. Inventory size of distribution center alters the location cost of distribution center, therefore optimal facility location problem was refreshed and solved again. The paper proposed iterative algorithm to get optimal inventory locations. Our paper expands their model in two ways; first we admit the difference of unit location cost for distribution centers by geographical locations, and secondly, we consider different uncertainties for customer orders by departing from simple Poisson distribution. The first alternation gives new explanation for the following situations: highly dense metropolitan regions have relatively larger number of centers and smaller coverage of each center. But such propensity usually contradicts with the land price; then center location should be limited considering higher land price in metropolitan areas. Then the optimal locations cannot be prospected in straight forwardly. The second model expansion allows our model to analyze how regularity of demands affects on the network structure. Our paper applies the model to the realistic Japanese transportation network, and show which cities may possess distribution center function in the nationwide distribution network. Without the back-stock in plant level, each distribution center must prepare inventory for their demand, but such inventory sometime requires unrealistic large location cost in metropolitan area such as Tokyo. On the other hand, if distribution center can rely on the back stock in plant, the centers in metropolitan regions stand without their own inventory.
    corecore