5 research outputs found

    Human activity recognition using wearable sensors: a deep learning approach

    Get PDF
    In the past decades, Human Activity Recognition (HAR) grabbed considerable research attentions from a wide range of pattern recognition and human–computer interaction researchers due to its prominent applications such as smart home health care. The wealth of information requires efficient classification and analysis methods. Deep learning represents a promising technique for large-scale data analytics. There are various ways of using different sensors for human activity recognition in a smartly controlled environment. Among them, physical human activity recognition through wearable sensors provides valuable information about an individual’s degree of functional ability and lifestyle. There is abundant research that works upon real time processing and causes more power consumption of mobile devices. Mobile phones are resource-limited devices. It is a thought-provoking task to implement and evaluate different recognition systems on mobile devices. This work proposes a Deep Belief Network (DBN) model for successful human activity recognition. Various experiments are performed on a real-world wearable sensor dataset to verify the effectiveness of the deep learning algorithm. The results show that the proposed DBN performs competitively in comparison with other algorithms and achieves satisfactory activity recognition performance. Some open problems and ideas are also presented and should be investigated as future research

    A Distance-Based Weighted Undersampling Scheme for Support Vector Machines and its Application to Imbalanced Classification

    No full text

    Self-paced balance learning for clinical skin disease recognition

    Get PDF
    Class imbalance is a challenging problem in many classification tasks. It induces biased classification results for minority classes that contain less training samples than others. Most existing approaches aim to remedy the imbalanced number of instances among categories by resampling the majority and minority classes accordingly. However, the imbalanced level of difficulty of recognizing different categories is also crucial, especially for distinguishing samples with many classes. For example, in the task of clinical skin disease recognition, several rare diseases have a small number of training samples, but they are easy to diagnose because of their distinct visual properties. On the other hand, some common skin diseases, e.g., eczema, are hard to recognize due to the lack of special symptoms. To address this problem, we propose a self-paced balance learning (SPBL) algorithm in this paper. Specifically, we introduce a comprehensive metric termed the complexity of image category that is a combination of both sample number and recognition difficulty. First, the complexity is initialized using the model of the first pace, where the pace indicates one iteration in the self-paced learning paradigm. We then assign each class a penalty weight that is larger for more complex categories and smaller for easier ones, after which the curriculum is reconstructed by rearranging the training samples. Consequently, the model can iteratively learn discriminative representations via balancing the complexity in each pace. Experimental results on the SD-198 and SD-260 benchmark data sets demonstrate that the proposed SPBL algorithm performs favorably against the state-of-the-art methods. We also demonstrate the effectiveness of the SPBL algorithm's generalization capacity on various tasks, such as indoor scene image recognition and object classification
    corecore