1,490 research outputs found

    Subquadratic time encodable codes beating the Gilbert-Varshamov bound

    Full text link
    We construct explicit algebraic geometry codes built from the Garcia-Stichtenoth function field tower beating the Gilbert-Varshamov bound for alphabet sizes at least 192. Messages are identied with functions in certain Riemann-Roch spaces associated with divisors supported on multiple places. Encoding amounts to evaluating these functions at degree one places. By exploiting algebraic structures particular to the Garcia-Stichtenoth tower, we devise an intricate deterministic \omega/2 < 1.19 runtime exponent encoding and 1+\omega/2 < 2.19 expected runtime exponent randomized (unique and list) decoding algorithms. Here \omega < 2.373 is the matrix multiplication exponent. If \omega = 2, as widely believed, the encoding and decoding runtimes are respectively nearly linear and nearly quadratic. Prior to this work, encoding (resp. decoding) time of code families beating the Gilbert-Varshamov bound were quadratic (resp. cubic) or worse

    Golden codes: quantum LDPC codes built from regular tessellations of hyperbolic 4-manifolds

    Full text link
    We adapt a construction of Guth and Lubotzky [arXiv:1310.5555] to obtain a family of quantum LDPC codes with non-vanishing rate and minimum distance scaling like n0.1n^{0.1} where nn is the number of physical qubits. Similarly as in [arXiv:1310.5555], our homological code family stems from hyperbolic 4-manifolds equipped with tessellations. The main novelty of this work is that we consider a regular tessellation consisting of hypercubes. We exploit this strong local structure to design and analyze an efficient decoding algorithm.Comment: 30 pages, 4 figure

    Fast algorithm for border bases of Artinian Gorenstein algebras

    Get PDF
    Given a multi-index sequence σ\sigma, we present a new efficient algorithm to compute generators of the linear recurrence relations between the terms of σ\sigma. We transform this problem into an algebraic one, by identifying multi-index sequences, multivariate formal power series and linear functionals on the ring of multivariate polynomials. In this setting, the recurrence relations are the elements of the kerne lII\sigma of the Hankel operator $H$\sigma associated to σ\sigma. We describe the correspondence between multi-index sequences with a Hankel operator of finite rank and Artinian Gorenstein Algebras. We show how the algebraic structure of the Artinian Gorenstein algebra AA\sigmaassociatedtothesequence associated to the sequence \sigma yields the structure of the terms $\sigma\alphaforall for all α\alpha \in N n.Thisstructureisexplicitlygivenbyaborderbasisof. This structure is explicitly given by a border basis of Aσ\sigma,whichispresentedasaquotientofthepolynomialring, which is presented as a quotient of the polynomial ring K[x 1 ,. .. , xn]bythekernel] by the kernel Iσ\sigmaoftheHankeloperator of the Hankel operator Hσ\sigma.Thealgorithmprovidesgeneratorsof. The algorithm provides generators of Iσ\sigmaconstitutingaborderbasis,pairwiseorthogonalbasesof constituting a border basis, pairwise orthogonal bases of Aσ\sigma$ and the tables of multiplication by the variables in these bases. It is an extension of Berlekamp-Massey-Sakata (BMS) algorithm, with improved complexity bounds. We present applications of the method to different problems such as the decomposition of functions into weighted sums of exponential functions, sparse interpolation, fast decoding of algebraic codes, computing the vanishing ideal of points, and tensor decomposition. Some benchmarks illustrate the practical behavior of the algorithm

    Fast Computation of Minimal Interpolation Bases in Popov Form for Arbitrary Shifts

    Get PDF
    We compute minimal bases of solutions for a general interpolation problem, which encompasses Hermite-Pad\'e approximation and constrained multivariate interpolation, and has applications in coding theory and security. This problem asks to find univariate polynomial relations between mm vectors of size σ\sigma; these relations should have small degree with respect to an input degree shift. For an arbitrary shift, we propose an algorithm for the computation of an interpolation basis in shifted Popov normal form with a cost of O ~(mω1σ)\mathcal{O}\tilde{~}(m^{\omega-1} \sigma) field operations, where ω\omega is the exponent of matrix multiplication and the notation O ~()\mathcal{O}\tilde{~}(\cdot) indicates that logarithmic terms are omitted. Earlier works, in the case of Hermite-Pad\'e approximation and in the general interpolation case, compute non-normalized bases. Since for arbitrary shifts such bases may have size Θ(m2σ)\Theta(m^2 \sigma), the cost bound O ~(mω1σ)\mathcal{O}\tilde{~}(m^{\omega-1} \sigma) was feasible only with restrictive assumptions on the shift that ensure small output sizes. The question of handling arbitrary shifts with the same complexity bound was left open. To obtain the target cost for any shift, we strengthen the properties of the output bases, and of those obtained during the course of the algorithm: all the bases are computed in shifted Popov form, whose size is always O(mσ)\mathcal{O}(m \sigma). Then, we design a divide-and-conquer scheme. We recursively reduce the initial interpolation problem to sub-problems with more convenient shifts by first computing information on the degrees of the intermediate bases.Comment: 8 pages, sig-alternate class, 4 figures (problems and algorithms

    Prefactor Reduction of the Guruswami-Sudan Interpolation Step

    Full text link
    The concept of prefactors is considered in order to decrease the complexity of the Guruswami-Sudan interpolation step for generalized Reed-Solomon codes. It is shown that the well-known re-encoding projection due to Koetter et al. leads to one type of such prefactors. The new type of Sierpinski prefactors is introduced. The latter are based on the fact that many binomial coefficients in the Hasse derivative associated with the Guruswami-Sudan interpolation step are zero modulo the base field characteristic. It is shown that both types of prefactors can be combined and how arbitrary prefactors can be used to derive a reduced Guruswami-Sudan interpolation step.Comment: 13 pages, 3 figure

    Application of Computer Algebra in List Decoding

    Get PDF
    The amount of data that we use in everyday life (social media, stock analysis, satellite communication etc.) are increasing day by day. As a result, the amount of data needs to be traverse through electronic media as well as to store are rapidly growing and there exist several environmental effects that can damage these important data during travelling or while in storage devices. To recover correct information from noisy data, we do use error correcting codes. The most challenging work in this area is to have a decoding algorithm that can decode the code quite fast, in addition with the existence of the code that can tolerate highest amount of noise, so that we can have it in practice. List decoding is an active research area for last two decades. This research popularise in coding theory after the breakthrough work by Madhu Sudan where he used list decoding technique to correct errors that exceeds half the minimum distance of Reed Solomon codes. Towards the direction of code development that can reach theoretical limit of error correction, Guruswami-Rudra introduced folded Reed Solomon codes that reached at 1Rϵ.1 - R - \epsilon. To decode this codes, one has to first interpolate a multivariate polynomial first and then have to factor out all possible roots. The difficulties that lies here are efficient interpolation, dealing with multiplicities smartly and efficient factoring. This thesis deals with all these cases in order to have folded Reed Solomon codes in practice
    corecore