32,195 research outputs found

    Studies on Real-Valued Negative Selection Algorithms for Self-Nonself Discrimination

    Get PDF
    The artificial immune system (AIS) is an emerging research field of computational intelligence that is inspired by the principle of biological immune systems. With the adaptive learning ability and a self-organization and robustness nature, the immunology based AIS algorithms have successfully been applied to solve many engineering problems in recent years, such as computer network security analysis, fault detection, and data mining. The real-valued negative selection algorithm (RNSA) is a computational model of the self/non-self discrimination process performed by the T-cells in natural immune systems. In this research, three different real-valued negative selection algorithms (i.e., the detectors with fixed radius, the V-detector with variable radius, and the proliferating detectors) are studied and their applications in data classification and bioinformatics are investigated. A comprehensive study on various parameters that are related with the performance of RNSA, such as the dimensionality of input vectors, the estimation of detector coverage, and most importantly the selection of an appropriate distance metric, is conducted and the figure of merit (FOM) of each algorithm is evaluated using real-world datasets. As a comparison, a model based on artificial neural network is also included to further demonstrate the effectiveness and advantages of RNSA for specific applications

    Real valued negative selection for anomaly detection in wireless ad hoc networks

    Get PDF
    Wireless ad hoc network is one of the network technologies that have gained lots of attention from computer scientists for the future telecommunication applications. However it has inherits the major vulnerabilities from its ancestor (i.e., the fixed wired networks) but cannot inherit all the conventional intrusion detection capabilities due to its features and characteristics. Wireless ad hoc network has the potential to become the de facto standard for future wireless networking because of its open medium and dynamic features. Non-infrastructure network such as wireless ad hoc networks are expected to become an important part of 4G architecture in the future. In this paper, we study the use of an Artificial Immune System (AIS) as anomaly detector in a wireless ad hoc network. The main goal of our research is to build a system that can learn and detect new and unknown attacks. To achieve our goal, we studied how the real-valued negative selection algorithm can be applied in wireless ad hoc network network and finally we proposed the enhancements to real-valued negative selection algorithm for anomaly detection in wireless ad hoc network
    corecore