STUDIES ON REAL-VALUED NEGATIVE SELECTION
ALGORITHMS FOR SELF-NONSELF
DISCRIMINATION

A Thesis
Presented to the Faculty of
California Polytechnic State University, San Luis Obispo

In Partial Fulfillment
of the Requirements for the Degree

Master of Science in Electrical Engineering

by
Shane Edward Dixon

February, 2010

© 2009
Shane Edward Dixon
ALL RIGHTS RESERVED

COMMITTEE MEMBERSHIP

TITLE:

AUTHOR:

DATE SUBMITTED:

COMMITTEE CHAIR:

COMMITTEE MEMBER:

COMMITTEE MEMBER:

Studies on Real-Valued Negative Selection Algorithms
for Self-Nonself Discrimination

Shane Edward Dixon

February 2010

Xiao-Hua (Helen) Yu, Associate Professor

Arthur MacCarley, Department Chair

Bryan Mealy, Assistant Professor

ABSTRACT

Studies on Real-Valued Negative Selection Algorithms for Self-Nonself
Discrimination

Shane Edward Dixon

The artificial immune system (AIS) is an emerging research field of
computational intelligence that is inspired by the principle of biological immune systems.
With the adaptive learning ability and a self-organization and robustness nature, the
immunology based AIS algorithms have successfully been applied to solve many
engineering problems in recent years, such as computer network security analysis, fault

detection, and data mining.

The real-valued negative selection algorithm (RNSA) is a computational model of
the self/non-self discrimination process performed by the T-cells in natural immune
systems. In this research, three different real-valued negative selection algorithms (i.e.,
the detectors with fixed radius, the V-detector with variable radius, and the proliferating
detectors) are studied and their applications in data classification and bioinformatics are
investigated. A comprehensive study on various parameters that are related with the
performance of RNSA, such as the dimensionality of input vectors, the estimation of
detector coverage, and most importantly the selection of an appropriate distance metric, is

conducted and the figure of merit (FOM) of each algorithm is evaluated using real-world

datasets. As a comparison, a model based on artificial neural network is also included to

further demonstrate the effectiveness and advantages of RNSA for specific applications.

Vi

ACKNOWLEDGMENTS

The completion of this thesis represents the greatest accomplishment of my educational
career at Cal Poly. | owe my thanks to many individuals that contributed to my success

in this substantial undertaking.

First and foremost, | would like to thank my thesis advisor, Dr. Helen Yu, for her
recommendation of this topic. The research into a new branch of computational
intelligence was a difficult endeavor; however, | was able to persevere with the

continuous support and guidance provided by Dr. Yu.

I must take this opportunity to also thank Dr. Art MacCarley. Since working with
him over a previous summer, he has become an inspirational role model and a valued
friend. His unwavering trust and faith in my capabilities instilled a much needed sense of

confidence.

Most importantly, I would like to thank my immediate family. | could not have
accomplished this task without the love, sacrifice and encouragement from my wife, Kari
Sweet. | would like to acknowledge my sister, Sheena Dixon, who looks upon me as a
role model in her own schooling, and reminds me to set the example for self-
perseverance. Finally, 1 would like to dedicate this study to my mother, Cheryl, whose
lifelong selfless acts of love and positive influence have made me into the person | am

today.

vii

TABLE OF CONTENTS

Page

LIST OF TABLES. ...ttt e et eae e vii
LIST OF FIGURES ...t viil
CHAPTER 1: INTRODUCTION ..ottt 1
CHAPTER 2: BACKGROUND.......oiiiiiiiiee ettt 4
2.1 Biological IMmUNe SYSIEMooiiiiiiiiieie e 4

2.2 Artificial ImmuNe SYSTEIMS.......ccuiiiieiiieiee e 8

2.3 NegatiVe SEIECTIONccuviiiieiie e 12
CHAPTER 3: REAL-VALUED NEGATIVE SELECTION ALGORITHMS......... 20
3.1 Real-Valued DiStance MELIICSccveriiiiiieiieeiiesie e 20

3.2 Negative Selection Algorithm with a Fixed Radius.............cccccvevviveiiiiee e, 26

3.3 Negative Selection Algorithm with Variable Sized Detectors............ccccccveene. 32

3.4 Negative Selection Algorithm with Proliferating Variable Sized Detectors....... 38
CHAPTER 4: NEURAL NETWORKS ... 43
I = - Tod (o] £ 11 o USSP 43

4.2 Artificial Neural Network Model...........cccooviiiiiiiie e 45

4.3 Learning Process of an Artificial Neural Networkccccoveveiviieciiie e, 49
CHAPTER 5: TESTING AND RESULTS ... 55
O. L DALASELS ...ttt 55

5.2 Testing Methodology and Algorithm Optimizationccccceeevieiiiee e, 60

5.3 Experimental Testing and RESUILScoovvveeiiiieiiii e 71
CHAPTER 6: CONCLUSIONS ... 88
REFERENGES ...t 90
APPENDIX A: ADDITIONAL DATA TABLES ... 92

APPENDIX B: SAMPLES OF MATLAB SOURCE.........ccccciiiiiii, 95

Table 5.1:
Table 5.2:
Table 5.3:
Table 5.4:
Table 5.5:
Table 5.6:
Table 5.7:
Table 5.8:
Table 5.9:

Table 5.10:
Table 5.11:
Table 5.12:
Table 5.13:
Table 5.14:
Table 5.15:
Table 5.16:

Table A.1:
Table A.2:
Table A.3:

viii

LIST OF TABLES
Training Data Distribution for Neural Network Implementation.................... 70
Final Results for Constant Radius using Manhattan Distance Metric 72
Final Results for Constant Radius using Euclidean Distance Metric 72
Final Results for Constant Radius using 3-Norm Distance Metric 73
Final Results for Constant Radius using co-Norm Distance Metric................. 73

Final Results for Constant Radius using Partial Euclidean Distance Metric ...73
FOM Final Results for Fixed Sized RadIUS.........c..ccccuveeiiieeiiieeiiieesiie e 74

Final Results for Modified V-Detector using Euclidean Distance Metric....... 75

FOM Final Results for Original V-Detector Implementation 76
FOM Final Results for Modified V-Detector Implementation...................... 76
FOM Final Results for Original Proliferating Implementation..................... 78
FOM Final Results for Modified Proliferating Implementation.................... 78
Neural Network Failure RESUILSccoovviiiiiiiiiee 79
Final FOM Results for Neural Network Model.............cccoeiiiiiiiiiiiniennn, 80
Final Total FOM Experimental ReSUILSccccoviveiiiii i, 81
Final 50% FOM Experimental ReSUILSccccvviieiiiie e 82
Iris Averages for Detection & False Alarm Ratescccceevvveeviveeviieennen. 92
Biomedical Averages for Detection & False Alarm Rates...............ccceeeneenn 93
BUPA Averages for Detection & False Alarm Ratesccccoeevveeviiveeineen, 94

LIST OF FIGURES
Figure 2.1: The Biological Immune System StruCtureccccccovveiiieniienieiie e 7
Figure 2.2: AIS as a branch of Computational Intelligence..............cccoveiiiiiiiiiiiiennnn 9
Figure 2.3: The Clonal Selection PrinCiple..........coooiiiiiiiiiie e 11
Figure 2.4: The Negative Selection PrinCiplecccoovviiiiiiie e 12
Figure 2.5: The Basic Concept of the Negative Selection Algorithmcccccoeevnenne. 14
Figure 3.1: Various Geometric Shapes Associated with Different Distance Metrics 24
Figure 3.2: Synthetic Data Shapes of Self Regions.cccoviiiiiiieiiiiiee e 25
Figure 3.3: Iterative Process of the Detector Generation for Constant Sized Detectors ...26
Figure 3.4: MOVING @ DEEECIONcveiiiieiiie it 28
Figure 3.5: Real-Valued Negative Selection Algorithm Pseudo-code.............cccccvvevnnnn, 31
Figure 3.6: Comparison of Detector Coverage for Different Detector Schemes............... 32
Figure 3.7: Calculating the Conservative Variable Detector Radiuscccccccvveinnnnns 35
Figure 3.8: Comparison of Detector Coverage Around a Self Sampleccccveeiien, 35
Figure 3.9: Real-Valued Negative Selection VV-Detector Algorithm Pseudo-code........... 37
Figure 3.10: Proliferation 0f @ DeteCtOr...........ccvveiiiie i 39
Figure 3.11: Examples of each Stage of Detector Proliferation.............cccccccovveviiveninnnn, 40

Figure 3.12: Negative Selection Proliferating V-Detector Algorithm Pseudo-code......... 42

Figure 4.1:
Figure 4.2:
Figure 4.3:
Figure 4.4:
Figure 5.1:
Figure 5.2:
Figure 5.3:
Figure 5.4:

Basic Structure of a Multilayer Perceptron.........ccccccoveivee i 46
Architecture of an Artificial Neural Networkccccccoviviiiiiiniiiiciien, 47
Plots of Different Activation FUNCHIONScccooiiiiiiiiiic e 48
Multilayer Feedforward Neural Network Algorithm Pseudo-code................ 54
Distribution of 1st and 2nd Dimensions of Iris Dataset..............c.cccoevervennnnn. 56
Distribution of 3rd and 4th Dimensions of Iris Dataset.............c.ccoevervennnnn. 56
Distribution of 1st and 2nd Dimensions of Biomedical Dataset 58

Distribution of 3rd and 4th Dimensions of Biomedical Dataset 58

Figure 5.5: Distribution of 1st and 2nd Dimensions of BUPA Datasetccccccveunee. 59
Figure 5.6: Distribution of 3rd and 4th Dimensions of BUPA Dataset...............cccccovenee. 59
Figure 5.7: Distribution of 5th and 6th Dimensions of BUPA Dataset...............ccccoovennee. 60
Figure 5.8: Iris Data Radius Optimization Plot for Various Distance Metrics................. 64

Figure 5.9: Biomedical Data Radius Optimization Plot for Various Distance Metrics64
Figure 5.10: BUPA Data Radius Optimization Plot for Various Distance Metrics.......... 65
Figure 5.11: Detector Count Optimization Plot for Euclidean Distance Metric............... 65

Figure 5.12: Offspring Detector COVEIAgEuueiiiiiiieiiiesie e 87

CHAPTER 1

Introduction

Many biological systems provide inspiration for developing new ideas in problem solving
strategies and computing paradigms. Similar to neural networks and genetic algorithms,
the mechanisms of learning, prediction, memory and adaptation in the immune system
are important biological metaphors in the research of bio-inspired computation methods.
Although relatively young, Artificial Immune System (AIS) models are emerging as an
active and attractive field involving models and applications of great diversity. There are
many immunologically inspired algorithms being explored in the field of computational
intelligence; the most dominant of these are the immune network model, clonal selection,
and negative selection algorithm. Each model can perform a variety of tasks, including
pattern recognition, data classification, fault detection, network and computer security,
data mining and numerous others.

An important aspect of the biological immune system is its ability to recognize
and categorize all of the cells or molecules in the body as either self or non-self cells.
Through an evolutionary learning process, the immune system is able to distinguish
between foreign antigens (bacteria, viruses, etc.) and the body’s own cells or molecules,
which became the inspiration for the artificial negative selection algorithm. The artificial

negative selection algorithm is a computational imitation of the self/non-self

immunological discrimination process. Since its conception, negative selection
algorithms have attracted the attention of many computational intelligence researchers.

This thesis addresses the task of data classification, specifically using the
self/non-self discrimination methods implemented in a real-valued negative selection
algorithm. Since gaining popularity, the negative selection algorithm has already
undergone several variations from its original implementation. Three specific variations
of the real-valued negative selection algorithm are tested using three different real world
datasets to determine the efficiency of each implementation. The central mechanism to a
negative selection algorithm is the selection of an appropriate matching rule, or distance
measure in the case of real-valued data. Therefore, five different distance metrics are
tested for each variation of the negative selection algorithm to compare the advantages
and disadvantages of each implementation. An artificial feedforward neural network
model is tested as a comparison model to established adaptive learning algorithms.
Finally, a figure of merit is proposed to measure each algorithm’s overall effectiveness in
performing correct data classification.

This study is separated into six distinct chapters. Chapter 2 introduces some
background concepts on the biological immune system and how it inspired and relates to
the AIS model. Various AIS models are reviewed, followed by an in-depth discussion
about the negative selection algorithm. Chapter 3 begins with a complete description of
each real-valued distance metric tested in this study. It also details the three unique
variations of the real-valued negative selection algorithms implemented, including
pseudo-code to aid in the understanding of each version. Chapter 4 includes a brief

background on neural networks followed by a discussion on the architecture and

calculations performed by the artificial feedforward neural network algorithm
implemented in this study. The last section of this chapter details the back-propagation
algorithm used to train the neural network. Chapter 5 covers the datasets, testing
methodology, and final results from this research. Finally, Chapter 6 presents the
conclusion of the findings and potential for future studies. Appendix A provides
additional data table not included in the body of this report and Appendix B includes

samples of the actual MatLab source code written for each algorithm version.

CHAPTER 2

Background

2.1 Biological Immune System

The biological immune system is a complex adaptive system of cells, molecules, and
organs that give an organism the ability to recognize foreign substances and neutralize or
degrade them, with or without injury to the organism’'s own tissue. To accomplish this
task, the immune system has evolved sophisticated pattern recognition and response
mechanisms using its network of chemical messengers for communication. They
recognize an almost limitless variety of infectious foreign cells and substances known as
nonself elements and are distinguished from those native noninfectious cells, known as
self molecules.

There are two major branches of the biological immune system. The innate
immune system is present before birth and consists of the cells and mechanisms that
defend the host from infection by other organisms, in a non-specific manner. One
important component of the innate immune system is a class of blood proteins known as
complement; this class has the ability to identify bacteria, activate cells and to promote
clearance of dead cells or antibody complexes. Several other functions of the innate
immune system include the recruiting of immune cells to sites of infection through the
production of chemical factors, and the identification and removal of foreign substances

present in organs, tissues, the blood and lymph, by specialized white blood cells.

The immune cells responsible for engulfing and destroying harmful pathogens
and particles are known as phagocytes. Phagocytic cells, including macrophages,
neutrophils and dendritic cells, function within the immune system by identifying and
eliminating pathogens that might cause infection. Phagocytes generally patrol the body
searching for pathogens, but are also able to react to a group of highly specialized
molecular signals produced by other cells [14]. Phagocytes also play a role in regular
tissue development and maintenance, and are an important part of the healing process
following tissue injury.

The other important immune cells in the innate immune system are the white
blood cells known as leukocytes. Leukocytes are different from other cells of the body in
that they are not tightly associated with a particular organ or tissue; thus, they function
similar to independent, single-celled organisms. Leukocytes are able to move freely and
interact with and capture cellular debris and foreign particles, or invading
microorganisms. Unlike many other cells in the body, most innate immune leukocytes
cannot divide or reproduce on their own, but are the products of pluripotent
hematopoietic stem cells present in the bone marrow [14].

The most important aspect of the innate immune system is the fact that it induces
the expression of co-stimulatory signals in antigen presenting cells (APCs) that will lead
to T-cell activation promoting the start of the adaptive immune response [7]. To clarify,
the adaptive or "specific" immune system is activated by the “non-specific” and
evolutionarily older innate immune system. The adaptive immune system is the main
focus of interest here as learning, adaptability, and memory are important characteristics

of adaptive immunity. The adaptive immune system is composed of highly specialized,

systemic cells and processes that eliminate or prevent pathogenic challenges. The
adaptive immune response provides the vertebrate immune system with the ability to
recognize and remember specific pathogens to generate immunity, and to mount stronger
attacks each time the pathogen is encountered.

The adaptive immune system is highly adaptable because of somatic
hypermutation (a process of accelerated somatic mutations), and V(D)J recombination
(an irreversible genetic recombination of antigen receptor gene segments). This
mechanism allows a small number of genes to generate a vast number of different antigen
receptors which are then uniquely expressed on each individual lymphocyte. The
adaptive immune system uses clonally distributed, somatically generated antigen
receptors on two types of lymphocytes, memory B-cells and memory T-cells [7]. B-cells
and T-cells are derived from the same pluripotential hematopoietic stem cells, and are
indistinguishable from one another until after they are activated. B-cells play a large role
in the humoral immune response; T-cells are intimately involved in cell-mediated
immune responses [14].

The humoral branch of the immune system involves the interaction of B-cells
with antigens and their subsequent proliferation and differentiation into antibody-
secreting plasma cells. Upon activation, B-cells produce antibodies, each of which
recognizes a unique antigen, and neutralize specific pathogens. An antigen is a substance
that prompts the generation of antibodies and can cause an immune response [14]. "Self"
antigens are usually tolerated by the immune system; "Non-self" antigens are identified
as intruders and attacked by the immune system. Antibodies function as the effectors of

the humoral response by binding to antigens and facilitating their elimination. When an

antigen is coated with an antibody, it can be eliminated in several ways, such as ingestion
by phagocytes or activation of the complement system [1]. The main point is that long-
lived antigen specific memory B-cells will remain after this process occurs; these cells
can be called upon to respond quickly if the same pathogen re-infects the host.

Effector T-cells generated in response to antigens are responsible for cell-
mediated immunity. Cytotoxic T-cells are a sub-group of T-cells which induce the death
of cells that are infected with viruses or are otherwise damaged or dysfunctional. Helper
T-cells are immune response mediators and play an important role in establishing and
maximizing the capabilities of the adaptive immune response. These cells have no
cytotoxic or phagocytic activity; they cannot Kill infected cells or clear pathogens, but, in
essence, "manage” the immune response by directing other cells to perform these tasks

[14]. Figure 2.1 illustrates the basic structure of the biological immune system [6].

Immunity

Innate Adaptative

|
l |

Phagocytes Leukocytes Lymphocytes

!—I—\

B-cells T-cells

Figure 2.1: The Biological Immune System Structure

In terms of information processing, the biological immune system is a fascinating

distributed adaptive system with partially decentralized control mechanisms. The system

utilizes feature extraction, signaling, learning, memory, pattern recognition, and
associative retrieval to solve recognition and classification tasks. It has the ability to
learn to recognize relevant patterns, remember patterns that have been seen previously,
and use a combinatorics to construct pattern detectors efficiently. Remarkably, the
overall behavior of the system is an emergent property of many local interactions within
the immune system [4]. As with many other biologically inspired methods, the immune
system provides several important aspects in the field of computational intelligence. In
particular, idiotypic network theory, negative selection mechanisms, clonal selection and
somatic hypermutation theories have emerged in Artificial Immune System models [1, 6,

7.

2.2 Artificial Immune Systems

In the 1990s a new branch of computational intelligence emerged, commonly referred to
as an Artificial Immune System (AIS). Since its inclusion into the field of computational
intelligence, a variety of models have been proposed which are inspired by the biological
immune system. Researchers have explored a variety of applications, including pattern
recognition, data classification, fault detection, network and computer security, data
mining, and numerous others [8]. Despite the Artificial Immune System models gaining
more attention recently, the underlining fundamental methodologies have not changed
dramatically. The most discussed models to date are the immune network models, clonal
selection, and negative selection. Figure 2.2 illustrates the placement of AIS models

within the field of artificial intelligence.

Artificial Intelligence

Biology-inspired
...... Tethae

Evolutionary Artificial immune

Neural HECH computation system (AIS) | =EsiEee

Negative selection

- Immune network Clonal selection Other models
algorithms

Figure 2.2: AIS as a branch of Computational Intelligence [4]

Proposed in the mid-seventies, the earliest form of immune network theory
suggests that the immune system maintains an idiotypic network of interconnected B-
cells for antigen recognition. This particular model is inspired by the biological adaptive
immune system, specifically the humoral branch dealing with lymphocyte B-cells. These
cells work together using stimulation and suppression to attain network stabilization. The
basic principle is that any two B-cells will connect if the affinity they share reaches a
specific threshold; the strength of this connection is directly proportional to the affinity in
which they share [1, 4].

Consequently, in an artificial immune network (AIN) model, populations of B-
cells are divided into two distinct categories: the initial population and the cloned
population. The initial population set is derived from a subset of the raw training data to
create a B-cell network. The remainders of the training data are used as antigen training
items and are selected randomly and presented to areas of the B-cell network. If the
antigen shares an affinity with a B-cell and binds successfully, the B-cell is cloned and

mutated. The mutated B-cell represents a diverse set of antibodies, and an attempt is

10

made to integrate it into the existing B-cell network. If the new B-cell cannot integrate, it
is removed from the network. If the antigen cannot bind with any B-cells in the existing
network, a B-cell is generated using the antigen as a template, and is then incorporated
into the network [4]. This model has become popular in network intrusion detection
systems for computer security [1, 8, 23].

Similar to the artificial immune network, the clonal selection principle describes
the basic features of an immune response to an antigenic stimulus [1, 4, 7]. Operating on
both B-cells and T-cells, clonal selection establishes the foundation that only those cells
that recognize an antigen proliferate, eliminating those which do not. The main features
of clonal selection theory are that new cells are clones of their parent cells, and subject to
high rates of mutation (somatic hypermutation). Proliferation and differentiation occur
whenever mature cells come into contact with antigens. Any lymphocytes (B and T-
cells) which include self-reactive receptors are eliminated [4, 7]. Figure 2.3 illustrates the
concept of the clonal selection principal.

The clonal selection principles should seem obviously similar to other
evolutionary algorithms, such as natural selection. The fittest candidates are the ones
which best recognize an antigen, and therefore are the cells allowed to proliferate; only
the clones which best perform are allowed to mature. The clonal selection algorithms
which exist produce several remarkable features: 1) population sizes dynamically
adjustable, 2) exploitation and exploration of the search space is achieved, 3) location of
multiple optima, 4) capability of maintaining local optima solutions, and 5) defined
stopping criteria [4,7]. Many of the algorithms proposed require minimal control

parameters as each emphasizes self-organization.

11

Proliferation
{Clening)

-0 = O
. ﬁO{% o

Selection Meamary cells

o_i Differentiation
Plasma c=lls

\ O - s
o ooy

&
Figure 2.3: The Clonal Selection Principle [7]

-0 -0
©0

There are many other immunologically inspired algorithms being explored in the
field of computational intelligence. Other features of the immune system being
considered include adaptation, immunological memory and protection against auto-
immune attacks. Approaches have been made to combine the power of the neural
network to immune system models, such as increasing the memory capacity and retrieval
performance using a Hopfield network to aid an associative memory model based on the
immune network [7]. A major branch of Artificial Immune Systems is negative
selection, and is the topic of discussion in the next section. Before an explanation of
negative selection is given, a new theory should be mentioned which may affect the
future of negative selection algorithms. Danger theory is a new theory becoming popular
among immunologists, which explores the discrimination that goes beyond the self/non-
self distinction previously believed. For example, there is no immune response to foreign

bacteria in some of the food we eat. Conversely, some auto-reactive processes are useful,

12

such as attacking self molecules produced by stress. The theory concludes that the

immune system only discriminates “some self from non-self” [1].

2.3 Negative Selection

An important aspect of the biological immune system is its ability to recognize and
categorize all of the cells or molecules in the body as either self or non-self cells.
Through an evolutionary learning process, the immune system is able to distinguish
between foreign antigens (bacteria, viruses, etc.) and the body’s own cells or molecules.
The purpose of negative selection is to ensure that lymphocytic cells are trained to only

eliminate harmful antigens, and to avoid reacting to self cells to avoid internal cellular

accessory cell -

damage.

developing
lymphocytes

\\self

antigens

binding
triggers
cell death

antigen
receptors

y .

nonbinding allows development to maturity

Figure 2.4: The Negative Selection Principle [18]

The negative selection process begins with the generation of T-cells, where the

receptor sites attached to the lymphocytes are created through a pseudo-random genetic

13

rearrangement process. Within the thymus, they undergo a rigorous censoring process,
where T-cells that react against self-proteins are destroyed. The cells that do not bind to
self-proteins are allowed to leave the thymus. These matured T-cells are then allowed to
circulate in the body and perform immunological functions to protect the body from
harmful foreign pathogens [4]. It is the process of self-nonself discrimination censoring
of the T-cells that is referred to as negative selection, which is illustrated in Figure 2.4.

The concept of a negative selection algorithm for computational intelligence was
first conceived by Stephanie Forrest in 1994 [9]. Forrest compared the problem of
protecting computer systems to that of learning to distinguish between self and non-self.
It is one of the earliest Artificial Immune System algorithms that was applied to real-
world applications. Since its conception, negative selection algorithms have attracted the
attention of many computational intelligence researchers. While the process has evolved
though various implementations, the fundamental characteristics remain intact.

Before a formal discussion of the negative selection algorithm can proceed, a new
set of terminology must be defined. The lymphocytic cell receptors which discriminate
between self and non-self cells are called “detectors.” The body’s immunological
functions recognize and categorize antigens, while the negative selection algorithm
operates to classify unknown data. The negative selection algorithm is not appropriate
for general classification tasks because it is a one-class based classification algorithm,
currently only utilized to discriminate between two classes of data. The terms “self” and
“non-self” are artificial labels given to the classification of data instances. For example,
in network security implementations, “self” would refer to standard incoming “safe” data,

while “non-self” would represent data deemed malicious or intrusive to the network.

14

Either the full or partial “self” data set is typically employed for training the negative
selection algorithm.

The negative selection algorithm consists of two phases: the generation stage
and the detection stage. Beginning with the generation stage, detectors are generated by
some random process and are eliminated if they match any self samples. The matching
criteria are based on the data representation and is discussed later. After a sufficient
number of detectors are generated, determined by certain stopping criteria, the generation
phase is terminated. The collection of retained “mature” detectors (or detector set) is
then implemented in the detection phase. Each unknown data instance is presented to the
detector set and is classified as either self or non-self. If the unknown data instance
matches any detector in the detector set, then it is classified as non-self or an anomaly. If
the incoming data instance is not recognized by any detector, it is safely assumed to be a
member of the self set. The generation and detection phases are shown below in Figure

2.5.

GENERATION STAGE DETECTION STAGE

Self Samples Deatector Set

/ +
~
Random N Add to Data ltem AL\ N

Candidate L . Detector Set to Be Checked L Normal (Self)
— Match?) _— Match?
—————= Diacard ———— Abnormal
Yes 4 Yes {Nonself)

Figure 2.5: The Basic Concept of the Negative Selection Algorithm [4]

15

As in any other computational intelligence technique, different negative selection
algorithms are characterized by particular data representation schemes, matching rules
and detector generation processes. The fundamental purpose of a negative selection
algorithm is to classify data; therefore, the algorithm is defined first and foremost by the
data representation scheme. The first implementations of negative selection algorithms
classified strictly binary data. Later on, it was extended to handle data in string
(alphabetic) representation. The focus of this study concerns real-valued data
representation, a more recent topic of research. Negative selection algorithms have also
been modified to handle hybrid data, comprising both real-valued and string data
representations [4].

The detector generation and elimination mechanisms implemented in a negative
selection algorithm are a defining characteristic of the algorithm. For string data
representation, both randomized algorithms (exhaustive algorithm) and deterministic
algorithms (linear time and greedy algorithm) have been discussed [15, 17]. To date,
only random-based generation schemes have been implemented for real-valued vector
data representation. Numerous strategies are proposed for how the random generation of
detectors are implemented. The classical approach is the random generation and
elimination strategy, and is implemented in this study with different variations. Other
approaches to detector generation include: 1) evolutionary approaches such as genetic
algorithms, 2) one-shot randomized algorithms, 3) optimization with aftermath
adjustment [12, 15, 17].

A significantly important factor in the performance of the negative selection

algorithm, and focus of this study, is the choice of matching rules implemented for data

16

recognition. The choice of the matching rules or the threshold used in matching rules
must be application specific and data representational dependent. The matching rule is a
measure of distance, affinity or similarity that two data instances share. Regardless of

representation, a matching rule M is symbolically defined as shown below [15].

dMx => affinity measure between detector “d” and data instance “x” (2.1)

Negative selection algorithms were first designed to detect changes in string data.
Several matching rules have been proposed for measuring the affinity of string data. The
Hamming distance or edit distance (equation 2.2) is an obvious choice for string data due
to its simplicity. It is defined as the minimum number of point mutations required to
transform one string data instance into another, where a point mutation is to change a
letter or bit. There is also a variation of the Hamming distance, called the Roger and
Tanimoto distance (R&T), shown in equation 2.3, where @ is the exclusive-OR operator,
and 0 < r < 1 is the threshold value. Another popular matching rule is the rcb (r-
contiguous bits) matching rule [15]. The matching requirement is defined as r contiguous
matching symbols in corresponding positions in a string of arbitrary length broken up
into shorter segments of predefined length. A variation of the rcb matching rule is the r-
chunk matching rule, in which an r-chunk detector is a string of r bits together with a
specific window. The detector d is said to match a string x if all bits of d are equal to the
bits of x in the window specified by d [17]. Many other matching rules exist for string
data representation including alternative variations to the Hamming distance, statistical

correlation and Landscape-affinity matching [15].

17
N

Hamming Distance : Z (X; ¢Y;) whereX,Y = binary n-dimensional vectors (2.2)
i=1

DT ® d; .
Roger and Tanimito Distance : S o d 1250 o d, =1 (2.3)
i b Uy g 1 7 Un

where X, d = binary n-dimensional vectors

For a real-valued vector data representation, the most common matching rule
equates to a mathematical distance metric. The calculation of a mathematical distance
metric outputs a real number to assign to the affinity, allowing simplistic comparison to
an assigned matching threshold. The most common distance metric implemented is the
Euclidean distance metric, but many others exist. The choice of distance metrics is
central to the content of this thesis, and is discussed further in chapter 3.

Matching rules have also been formulated for hybrid (or mixed) data
representations. One popular distance metric for handling mixed data is the
Heterogeneous Euclidean-Overlap Metric (HEOM). Another useful metric for
determining similarities in hybrid data is the Heterogeneous Value Difference Metric
(HVDM) [17]. An explanation of each method is provided in equations 2.4 and 2.5.
Alternative matching rules may exist for hybrid data, but these two represent the

standards implemented currently in negative selection algorithms.

G
Heterogeneous Euclidean-Overlap : HEOM (x.y) = Z heom(x, — yg)> (2.4)

g=1

where heom(x.,y,) =
O L, Y Leq—)| g is discrete or real

- 10 bl
range,

{ overlap(zy,yy), ¢ isnominal

18

&
Heterogeneous Value Difference : HV DM (z.y) = Z hvdm(x, —yg)? (2.5)

g=1

vvdm(zg,y,), ¢ isnominal

hvdm(z,,y,) = T —1 ..
(@2, Yg) —'“f s Ya| ¢ is discrete or real
range, ’

where

C

vdm(ig, yg) = > (Plelrg) — Plclyy))”

c=1

While data representation, detector generation and matching rules define each
negative selection algorithm, there are several other factors that affect the performance.
The number of detectors affects the efficiency of generation and detection, and
consequently the speed of the algorithm. Linked directly to the accuracy of detection,
detector coverage is also an important factor to consider during detector generation. The
stopping criteria and detector generation schemes are typical control parameters to
determine an adequate number of detectors and coverage. Chapter 3 provides different
implementations of each to optimize detector coverage and accuracy.

Since gaining recognition, the negative selection algorithm has already undergone
several variations from the original implementation. The combination of negative
selection with alternative classification techniques continues to grow. As mentioned
previously, danger theory is one example of an extension to negative selection
algorithms. Considering network security, danger theory would prove beneficial by
elaborating on the self/non-self discrimination by identifying “non-self but harmless” and

“self but harmful” [1]. Another new approach proposed is to allow the negative selection

19

algorithm to generate non-self samples and then apply a separate classification algorithm
to generate the characteristic function of the self (or non-self). This characteristic
function corresponds to an anomaly detection function, and is able to classify new
samples as either self or non-self. From the proposed approaches published, two
different classification algorithms were tested: 1) a multilayer neural network trained
using back-propagation and, 2) an evolutionary algorithm to generate fuzzy classifier
rules, using a genetic algorithm with a linear representation of tree structures in order to
evolve complex fuzzy rule sets [10, 11].

The last variation of the negative selection algorithm of significance is a
multilayer artificial immune system which employs both positive and negative selection.
The alternative model of positive selection is suggested to reduce the number of false
detections of self cells classified as non-self [20]. Detectors are generated in the same
fashion for negative selection; but, in addition, a new subset of detectors is generated
using positive selection to capture the knowledge of known self data. When an unknown
data instance is applied to the system, the data instance is classified as non-self only if the
negative selection detectors match and the positive selection detectors do not match

[15,20].

20

CHAPTER 3

Real-Valued Negative Selection Algorithms

The real-valued negative selection algorithm was originally proposed in 2002 [11].
Several important factors determine the characterization and efficiency of a real-valued
negative selection algorithm. By definition, the data and detectors are represented by real-
valued data. The focuses of this study targets the implementation of different matching
rules (distance metrics), detector generation and censoring schemes. The intention is to
evaluate the performance of three different detector generation formats and to compare

their results based on five selected distance metrics.

3.1 Real-Valued Distance Metrics

The selection of an appropriate distance measure is crucial to the overall performance of
a real-valued negative selection algorithm. The entire process of a negative selection
algorithm, or of any learning algorithm, is built on the concept of affinity or distance.
First and foremost in a real-valued negative selection algorithm, the distance metric
determines the shape of a detector in an n-dimensional space. While there are several
control parameters that may be modified to affect the performance of the generation
phase, the distance metric is the central mechanism for the functionality of the algorithm.
The number of detectors generated and the estimation of detector coverage are both

byproducts of the distance metric implemented. Most importantly, during the detection

21

phase, it is the decision rule implemented to classify the unknown incoming data instance
as either self or non-self.

In Euclidean space Ry, the commonly used Euclidean distance, or 2-norm, can be
generalized to the Minkowski distance of order m, or L, distance, for any arbitrary m.
For a point (X1, X2, X3, ..., xn) and a point (y1, Y2, ¥3, ..., yn) In n-dimensional space the
Minkowski distance, or m-norm distance, is defined as shown in equation 3.1 [15,16].
Four of the five distance metrics implemented in this study are simply variations of the
Minkowski distance. The 1-norm distance is called the Manhattan distance metric (3.2),
and is simply the absolute value of the difference between two points in n-dimensional
space. The most common distance metric, and often the first to come to mind, is the
Euclidean distance measure (equation 3.3), also referred to as the 2-norm. The next
distance metric implemented has no special moniker, and is just simply stated as the 3-
norm distance metric (equation 3.4). It is similar to the Euclidean distance, except the
difference is cubed and the summation is cube-rooted. Unlike the Euclidean measure, the
absolute value sign is critical here to avoid imaginary values. The final variation of the
Minkowski distance is the infinity norm distance (equation 3.5). As shown, by taking the
limit as m approaches infinite, it yields the maximum distance between two points in a
single dimension. This distance metric is referred to in subsequent sections as simply the

Max distance metric.

n
Minkowski Distance : Z |z — yi|™ (3.1)

22

n
Manhattan Distance : E \:1:,,; — 'yz\ (3.2
i=1
T ,
Euclidean Distance : Z(Ti— Yi) (3.3)
=1
1
n 3 3
3-norm Distance : Z i — il (3.4)
i=1
1
n m
Infinity Norm Distance : lim Z |ilf-s. - -;uf\”' (3.5)
m—00

i=1

=max(|z; — vy, i =1,2,--- ,n)

The final distance metric utilized in this study is fashioned after the rcb matching
rule for string data, but is applied in real-valued data representation. This distance
measure can be described as the partial Euclidean distance. The distance is defined over
some of the elements of the vector, equivalent to the distance projected to a lower
dimensional space degraded from the original space. In other words, the Euclidean
distance is not calculated over all dimensions of a vector of data; only some of the
dimensions are used instead to calculate the distance over a lower-dimensional space. In
this manner, it is similar to partial matching in string representation that only uses some
bits [16]. The measure can be chosen contiguously or randomly, but in either case the

chosen positions need to match between the two points whose distance is calculated.

23

In the case of this study, the points are chosen contiguously using a mechanism
referred to as a “sliding window.” For example in a four dimensional space, two points
are represented as (X1, X2, X3, X4) and (y1, Y2, Y3, Ya). The partial Euclidean distance
measure would perform the typical Euclidean distance calculation, but only for the points
(X1, x2) and (y1, y2,). Next, the window of observation will “slide” to the next two sets of
data points, (x2, x3) and (yz, ys,), and conclude with (xs, X4) and (ys, ys,). Of the three
separate distances calculated, only the least in size will be retained. Therefore, the partial
Euclidean distance determines the smallest distance in two-dimensional space for n-
dimensional points in space. For all implementations in this study, the window size is
fixed to two, and this distance metric will often be referred to as simply the Window
distance metric.

One unique feature of the distance metric chosen for a real-valued negative
selection algorithm is the impact it has on the shape of the detectors. The detectors are
assigned a real-valued threshold utilized in self/non-self discrimination, which can be
envisioned as a radius of detection. If a calculated distance is less than this assigned
threshold, the detector is said to “detect” that data instance; therefore, classifying it as
non-self. This set threshold, or radius, combined with the desired distance measure yields
a distinct shape for each detector implementation. Figure 3.1 illustrates the shape of each

detector in two-dimensional space for a given distance metric with the same radius.

24

1 — norm distance 2 — norm distance
(Manhattan) (Euclidean)
3 — norm distance o — norm distance

Figure 3.1: Various Geometric Shapes Associated with Different Distance Metrics [15]

In a previous study, the four distance metrics shown in Figure 3.1 were compared
to estimate coverage. To test the algorithm, experiments were carried out using 2-
dimensional synthetic data over the unit square [0, 1]>. Two shapes were used as the
‘real’ self region in these experiments, the “intersection” and “five circles,” as Figure 3.2

shows [15]. For the “intersection” shape, the Euclidean and Manhattan distance

25

measures performed the best. The “five circles” shape yielded nearly equal results for all
four distance metrics with a tenth of a percent difference. However, for the “five circles,”

the 3-norm out-performed the latter, with the Manhattan at a close second.

O

O
O
O O

(a) Intersection (b) Five Circles

Figure 3.2: Synthetic Data Shapes of Self Regions [15]

The previous experiment further justifies the need for the content of this report.
No research to date studies the effects of different real-valued negative selection
algorithms and analyzes the effects of implementing various distance metrics. The
previously mentioned study is the only study to evaluate the effects on different real-
valued distance metrics, and it only used synthetic data in two dimensions that fit into
symmetric shapes [15]. Because it was only in a two dimensional space, it did not take
into account how each distance metric will perform in an n-dimensional space
discriminating between real world data, or how it may compare to the partial Euclidean

metric described previously.

26

3.2 Negative Selection Algorithm with a Fixed Radius

The first real-valued negative selection algorithm implemented and tested is based on the
techniques proposed by Gonzalez and Dasgupta [11]. The approach uses real-valued data
representation to characterize the self-nonself space and evolve a set of detectors that can
cover the non-self complementary subspace. The inputs to the algorithm are the self
samples represented by n-dimensional points (vectors). The algorithm then attempts to
evolve another set of points (called detectors) to cover the non-self space. This is
accomplished through an iterative process that updates the positions of the detectors
driven by two fundamental goals. The detectors must remain a set distance (threshold)
away from the self points and the detectors must remain separated from other detectors in
order to maximize the non-self space covering. Figure 3.3 illustrates the iterative process

of the detector generation phase, with a thorough discussion to follow [10].

A

For each detector 'd’

Does 'd’ match
any self point?

Y

Move 'd’ away
from other
detectors

Y

'd.age’ ++ 'd.age’ =0

Y

Move 'd’ away

Discard 'd’ from self

Figure 3.3: Iterative Process of the Detector Generation for Constant Sized Detectors

27

The generation phase of the real-valued negative selection algorithm
implementing detectors with a fixed radius begins by assigning values to several control
parameters. The total number of detectors generated is a predetermined control
parameter. As mentioned previously, the threshold of a detector is a preset real-valued
assignment to distinguish between self and non-self. The matching criteria in a real-
valued negative selection algorithm are based on a distance metric; therefore, the
threshold value logically takes the form of the detector’s radius of detection. The
detection threshold is often referred to as the detector’s radius, or specified as simply r.
Another important control parameter of the algorithm is the adaptation rate #,, which
controls the initial amount a detector is moved away from other self or detector points.
An additional control parameter z controls the decay rate of the step size implemented to
move the detector for each iteration. The final control parameter t is a preset maximum
age the detector must reach before being discarded. All of the control parameters become
clearer as the algorithm is discussed in more detail.

The detector generation phase begins by randomly generating a preset number of
n-dimensional points in space, distributed in a subset of R", specifically [0,1]", with a
mean value of “2. The real-valued data utilized in testing is also normalized within the
subset of [0,1]". The dimensionality of the subspace is determined by the dimensionality
of the test data. Because the parameter r specifies the radius of detection for each
detector, each detector can be envisioned as a hypersphere with a center and fixed radius
in an n-dimensional space. The detectors are trained with only self samples; since it is
undesirable for the detectors to match self points, the shortest allowable distance for a

good detector to the self set is r.

28

The determination of the distance from any detector to a self point is computed
using the distance metric. For this study, five different distance metrics are separately
implemented. The algorithm begins by calculating the distance from a single detector to
each self point individually, and the shortest distance from the detector to any self point is
stored. If that distance is less than the threshold radius r, the detector is moved,
otherwise, it is stored for the detection phase. Neglecting the first detector, each
subsequent detector also computes the distance to all previously stored detectors, and

again is moved or stored based upon the radius r.

Figure 3.4: Moving a Detector
The preset adaptation rate parameter 7, represents the initial step size used to
move the detectors. In order to guarantee that the algorithm converges to a stable state, it
is necessary to decrease this parameter in each iteration in such a way that the limj .. 7
=0. Equation 3.6 shows the updating rule for #i, where 7, is the initial value of the
adaptation rate, z controls the decay rate, and i is the age of the detector. The movement

of each detector is based on adaptation rate, the current position (center) of the detector,

29

and the direction in which to move the detector. The direction either takes the form of a
positive or negative one, and is calculated based on the shortest calculated distance to any
self point or detector. The nearest self point or detector center is stored along with the
shortest distance computed to this point; the direction is found by equation 3.7, where ¢
represents the nearest point. Finally, the new location of the detector is determined by
the equation, d(i+1) = d(i) + #»; *dir, where d(i) is the current position (center) of the

detector, and d(i+1) is the new position of the detector.

Adaptation Updating Rule : N, = 770677 (3.6)

n

> (-

Direction Computation : — (3.7)

n
d nearesi
,—C
i=1

Each detector is assigned an age which is incrementally increased after each
iteration of detector movement, provided that its calculated distance is less than r for any
self point or previously stored detector. Each time the detector is moved, the age
increases by one until the detector reaches the maturity age t. If the detector reaches the
maturity age t and has not been able to move out of the self subspace, it is eliminated and
a new detector is randomly generated to replace it. If the detector is able to move out of

the self subspace, the age is reset to zero and the detector is stored.

30

The maturity age is used to discard detectors which are not able to relocate a
distance r from existing detectors and self points. There are two cases that require this
necessity. Because the adaptation rate decays with each movement, it may never be
moved far enough outside of the self subspace. The more likely case concerns self points
and previously stored detectors, in which the detector is moved in the positive direction
outside of the self subspace, but in turn relocates within the detection area of a previously
stored detector. The next iteration of movement will cause the detector to be relocated in
the negative direction, back into the self subspace. This pattern could repeat infinitely
until the maturity age condition is met.

The stopping criterion for the real-valued negative selection algorithm using fixed
sized detectors is based on a pre-specified number of detectors. This is not the best
approach, and obviously provides no guarantee that the non-self space is completely
covered. However, by selecting a large enough value for the number of detectors, the
algorithm is expected to provide adequate results. Figure 3.5 provides pseudo-code for
the generation phase of the algorithm.

After the generation phase has completed, the algorithm begins the detection
phase. Once a predefined number of detectors are generated, each individual unknown
data instance is presented to the detector set. The distance metric is applied for every
detector in the detector set, and if the calculated distance is less than r for any detector,
the detector is said to have detected that data instance. By definition of the negative
selection algorithm, if a data instance is detected, it is classified as non-self. If no

detectors are capable of detecting an unknown data instance, it is classified as self.

31

Real-Valued Negative Selection Algorithm with Fixed Detection Radius
Preset Control Parameters: r, o, t, 7, # of Detectors
Generate a random population of Detectors based on # of Detectors
For each detector d;,

Calculate shortest distance to any self point, dist_min, and store nearest point ¢;

While (dist_min <r)

Ifage >t
Generate new Detector d;,

Else
Calculate direction (dir) using c;,
Calculate #;,
Move detector by: d+1) = di + #; *dir
Increase age + 1,
Recalculate dist_min and ¢;

End If

End While

If (Not the first detector),
Calculate shortest distance to all previous detectors and self points, dist_min2,
and store nearest point c;
While (dist_min2 <)
Ifage > t
Generate new Detector d;,

Else
Calculate direction (dir) using c;
Calculate #;,
Move detector by: d.1y = di + #; *dir
Increase age + 1,
Recalculate dist_ min2 ¢;

End If

End While

Store detector as d;,
Else
Store detector,
End

Figure 3.5: Real-Valued Negative Selection Algorithm Pseudo-code

This concludes the explanation of the real-valued negative selection algorithm
using a fixed-sized radius of detection. The next algorithm discussed is a more elegant

approach to the negative selection algorithm which incorporates variable-sized detectors.

32

3.3 Negative Selection Algorithm with Variable-Sized Detectors

The first implementation of the real-valued negative selection algorithm generated
detectors in which the distance threshold (or radius) was constant throughout the entire
detector set. However, the detector features can reasonably be extended to overcome this
limitation. Zhou and Dasgupta proposed a new scheme of detector generation and
matching mechanisms for negative selection algorithms which introduced detectors with
variable properties [17]. The proposed algorithm includes a new variable parameter,
which is the radius of each detector. The threshold used by the distance matching rule
defines the radius of the detectors; it is an obvious choice to make variable considering
that the non-self regions covered by detectors are likely to be variable in size. The

flexibility provided by the variable radius is illustrated in Figure 3.6[16].

N -
. self regi
,.J

1\

a) Constant-Sized Detectors b) Variable-Sized Detectors

Figure 3.6: Comparison of Detector Coverage for Different Detector Schemes

33

Figure 3.6 actually illustrates several core advantages to the method of
implementing variable-sized detectors. The first apparent advantage is that a larger area
of non-self space is covered by fewer detectors. The issue of “holes” is a well-known
problem with real-valued negative selection algorithms. Tiny spaces between detectors
and self points cannot be filled by constant-sized detectors, as illustrated in black in the
Figure 3.6 (a). However, by using variable-sized detectors as shown in Figure 3.6 (b),
smaller detectors can be generated to cover small holes while larger detectors cover the
wider non-self space.

Another advantage of the variable-sized detector method not shown in Figure 3.6
is that estimated coverage, instead of the number of detectors, can be utilized as a control
parameter. As the detector set is generated, the algorithm can automatically evaluate the
estimated coverage, providing a much more useful stopping criterion. This is discussed
in greater detail later in this section.

The variable-sized detector negative selection algorithm, or V-detector algorithm,
functions similarly to the fixed-sized radius algorithm discussed previously. First, a set
of predefined control parameters must be initialized. The most influential of these
parameters is the self threshold, or radius r.. Because the detectors no longer share the
same fixed radius, distinction must be made between the self radius rs and the detector’s
variable radius rg. The remaining two control parameters that determine the stopping
criteria are the estimated coverage ¢, and the maximum number of detectors Dmax.
Obviously, the eloquence and simplicity begins to become apparent as the control
parameters (i, ¢ 7, dir) required to move each detector are eliminated, making the

initialization of the V-detector algorithm much easier than the previous version.

34

The generation phase of the V-detector algorithm begins by randomly generating
detector candidates; but instead of generating a full set of detectors determined by a fixed
control parameter, it generates detector candidates one at a time. Each individual
candidate is checked using the matching rule determined by the choice of distance metric.
If the distance to the nearest self point is less than the threshold value (self radius rs), the
detector is eliminated and a new candidate is generated. If the minimum distance to any
self point is greater than the self radius rs, then the detector is stored temporarily (the
reason the detector is only stored temporarily is discussed later) and the radius is recorded
as rq, based upon the minimum distance to the nearest self point. This is known as the
aggressive approach to assign a detector’s radius [16]. Detectors are iteratively generated
and assigned a radius based on this simple mechanism until the stopping criteria is
achieved.

A more conservative approach to detector radius assignment can also be
implemented, whereas the detector radius ry is assigned as the difference between the
nearest self point ¢ and the threshold radius rs of the nearest self point [17]. Both
implementations were initially tested, and the more aggressive strategy proved to produce
more accurate results, and consequently was the method chosen for this study. Chapter 5
discusses how minor modifications to this aggressive strategy can produce optimized
results. Figure 3.7 shows how the conservative detector radius is determined. Figure 3.8
(a & b) illustrates the differences between the conservative and aggressive approaches for

variable radius detectors.

35

self points 4 ... =

Figure 3.7: Calculating the Conservative Variable Detector Radius

self sample

2

"self radius”

a) Conservative Approach b) Aggressive Approach

Figure 3.8: Comparison of Detector Coverage Around a Self Sample

The control parameters of the V-detector algorithm consist of the self radius rs,
the estimated coverage c,, and the maximum number of detectors Dmax. The latter two
are the central mechanisms for the stopping criteria; the maximum number of detectors is

preset to allow the maximum allowable detectors in practice. Estimated coverage is a

36

by-product of the variable detector algorithm. When a detector candidate is generated
and assigned a radius rq based on the implementation described previously, it is not
permanently stored for the detection phase. The detector candidate is then checked to
determine if it can be detected by any previously stored detector. If the detector is
detected, it is eliminated, and the attempt is recorded in a counter which will be used to
estimate coverage. If the detector is not detected by any previously stored detectors, it is
stored permanently for the detection phase and counter is reset to zero. If the counter of
consecutive attempts that fall on covered points reaches a limit mp, the generation stage
finishes with enough confidence that the coverage is sufficient enough to cover the
nonself space [15].

The limit of the counter mpa is decided by the estimated coverage, i.e., Mpax=1/
(1-co). Assume “1” is for full coverage. If there is one uncovered point in a set of m
samples, then the estimated uncovered region is 1/m; i.e., the estimate of coverage is ¢, =
1- 1/m [15]. For example, for 99% estimated coverage, (C, = 0.99), Mnax=100.

The V-detector algorithm converges in one of two ways based on the stopping
criteria. The first convergence scenario occurs when the estimated coverage is attained.
This is the preferred method of convergence, as it displays the power of the V-detector
algorithm to control the number of detectors generated. The alternative convergence
scenario is when the limit of maximum detectors is reached. While not desirable, it still
has the potential to cover more holes than the basic fixed-sized detector negative
selection algorithm. Figure 3.9 provides pseudo-code for the generation phase of the

V-detector algorithm.

37

Real-Valued Negative Selection Algorithm with Variable Detection Radius
Preset Control Parameters: rs, Mpax, Dmax
While (M < Mpax) || (i < Dmax)
Generate a random Detector candidate d;,
Calculate shortest distance to any self points, dist_min,
If (dist_min <)
Return to top,
Else
If(i=1)
Store detector as d; and dist_min = ry;,
Increment i + 1
Else
Calculate shortest distance for each previous detector, dist_min2,
If (dist_min2 < ry)
m=m-+1,
Else
Store detector as d; and dist_min2 = ry;,,
Increment i + 1
m=0,
End If
End If
End If
End While
End

Figure 3.9: Real-Valued Negative Selection V-Detector Algorithm Pseudo-code

The detection phase of the V-detector algorithm is almost exactly the same as the
fixed-sized detector algorithm. The only exception is the detector threshold utilized for
the unknown data detection is based on the variable radius ry assigned to each detector.
If an unknown data instance is detected (i.e. the minimum distance to any detector is less

than ry), it is classified as non-self, otherwise it is classified as self.

38

3.3 Negative Selection Algorithm with Proliferating Variable-Sized

Detectors

One of the most recent advances in real-valued negative selection algorithms incorporates
the implementation of proliferating variable-sized detectors [3]. This method, referred to
as the proliferating V-detector algorithm, consists of three stages. It begins with a
generation stage, (very similar to the standard V-detector algorithm), followed by a new
proliferation stage, and finally the detection stage.

During the generation phase, the detector set is filled with an initial set of
detectors in the same manner as the generation phase for the V-detector algorithm. The
only difference is the assignment of the variable radius ry. Recall two methods were
described for the variable radius assignment, either the aggressive or conservative
approach. The minimum distance dist_min is calculated from a single detector to the
nearest self point, and the variable radius ry is assigned accordingly: 1) aggressive
method ryq = dist_min; 2) conservative method rq = (dist_min - r;). The proliferating V-
detector algorithm includes an additional threshold term & which is also subtracted from
the variable radius rg. In relation to the two methods described above, the aggressive
variable radius would yield rg = (dist_ min - 6), and the conservative variable radius
assignment would result in ry = (dist_min - rs -). The implementation in this study is
the aggressive approach.

After the generation phase concludes, the proliferation stage begins to proliferate
(or clone) new detectors from the detector set initially created from the generation stage.
These new detectors are referred to as offspring. At the beginning of the proliferation

stage, the algorithm already has a set of detectors D from the previous generation stage.

39

In the ith iteration, it selects one of those detectors whose center and radius are x; and r;
from the set D, and creates new offspring located at a distance r; from x;. In two
dimensions, the original detector is regarded as a circle of radius r; in the nonself region
centered around x;, and the offspring detectors will be located along the circle’s
circumference at a location x; + 0ri, where G is some unit direction vector [3]. The
offspring’s radius is set to be equal to the minimum distance from its center to the nearest

self point, but modifications exist with the introduction of an additional threshold 6.

.......
.

Figure 3.10: Proliferation of a Detector

Offspring coverage is controlled in the same manner as the detector generation
phase of the V-detector algorithm. Since a new detector has additional coverage value
only when another does not already cover the space, only those offspring detectors which
are not covered are retained for the detection phase. The detectors in D are selected for
proliferation in a sequential manner, and in this implementation the unit vectors O are
kept to be either parallel (+1) or anti-parallel (-1) to each dimension. Hence, in a two

dimensional input space, there are four possible values of 0: (1, 0), (-1, 0), (0, 1), and (O, -

40

1). In a three dimensional input space, there are six such vector, eight for four
dimensions, ten for five dimensions, and so on.

The proliferation stage may involve more than one stage of proliferation. Several
stages of proliferation, where the offspring from one stage is allowed to proliferate in the
next stage, are often desirable. Maintaining the threshold 6 initially high during the first
the first generation stage, and lowering it towards zero in a stepwise manner during
subsequent proliferation stages, can result in much better coverage of the non-self
subspace. This is because decrementing the threshold 6 at the end of each stage creates a
gap between the self / non-self boundary. This gap can then be filled by the offspring
detectors of the next proliferation stage. Steadily decreasing the gap by lowering 6
results in increasingly smaller, but strategically placed offspring to proliferate around the
self / non-self boundary region. To ensure full coverage of the non-self subspace, the
threshold @ must be set to zero during the last stage of proliferation [3]. Figure 3.11

illustrates this concept, where rq represents the radius of each detector.

self point self point self point

Iyi 6 rgj %20 Ik

Figure 3.11: Examples of each Stage of Detector Proliferation

41

As mentioned previously, this study implements an aggressive approach for the
assignment of the variable radius ryg. For the implementation of the proliferating V-
detector algorithm, an additional threshold term @ is required. The proposed algorithm
for this study takes advantage of the self threshold radius rs, and assigns it to the value of
the required threshold . Utilizing this method, the initial generation phase is no different
than the conservative approach for variable detector generation and radius assignment. In
subsequent proliferation stages, the threshold value rs are reduced by 50%, 25%, and
finally zero. Two implementations are carried out for this study, one involving three
stages of proliferation, and one comprising only two stages. A more thorough discussion
of these implementations is covered in Chapter 5. Pseudo-code for the implementation of
the proliferation stage is presented at the end of this chapter. New code is not necessary
for the generation phase, as it remains relatively unchanged from the V-detector
generation algorithm.

The detection phase of the proliferating V-detector algorithm remains completely
unchanged from the basic V-detector algorithm. A variable radius threshold is assigned
to each detector, and a distance measure is calculated for each unknown data instance.

Detection results in the classification of non-self; those not detected are classified as self.

42

Real-Valued Negative Selection Algorithm with Proliferating Variable Detectors
(Proliferation Stage only)
Dqiq includes all detectors generated in initial generation phase
Note (6 = rs) in generation phase
i=1,
6=.5%*r;,
For each d; (Xi, ri) in Dgyq
For each unit vector G (determined by dimension n of training data)
Xj =X+ ar;,
Calculate distance to nearest detectors, dist_min,
If (dist_min <)
i=i+1,
Return to top,

Else
X;j stored into Dy,
Calculate distance to nearest self point, dist_min2,
rj = dist_min2 - 6,
i=i+1,
=i+l
Return to top,
End If

End 1* Proliferation Stage
Begin 2" Proliferation Stage
=1
0=.25%*r;,,
For each dj(Xj, ;) in Dnew
For each unit vector G (determined by dimension n of training data)
Xk = X + a r,
Calculate distance to nearest detectors, dist_min,
If (dist_min <)
=i+l
Return to top,

Else
X stored into Dpewe,
Calculate distance to nearest self point, dist_ min2,
re = dist_min2 - 6,
j=j+1,
k=k+1,
Return to top,
End If

End 2nd Proliferation Stage

Repeat for each stage, decrementing € for each subsequent stage until 6 = 0
End

Figure 3.12: Negative Selection Proliferating VV-Detector Algorithm Pseudo-code

43

CHAPTER 4

Neural Networks

4.1 Background

The brain is a highly complex, nonlinear information processing system. It has the
capability to organize its structural constituents, known as neurons, to perform certain
computations many times faster than the fastest computer in existence today. Examples
of the brain’s computational functions include pattern recognition, perception, and motor
control. Motivated by recognizing that the human brain computes in an entirely different
way from conventional digital computers, researches have adopted this structure into a
computational model known as artificial neural networks [13].

In its most general form, an artificial neural network is an information processing
system that is designed to model the way in which the brain performs a particular task or
function. The fundamental information processing unit in the human brain is the neuron,
and likewise is the essential building blocks of any neural network. A neural network is a
massively parallel distributed processor made up of simple processing units (neurons)
that have a natural propensity for storing experiential knowledge and making it available
for use. Like the brain, knowledge is acquired by the network from its environment
(data) through a learning process; interneuron connection strengths, known as synaptic

weights, are used to store the acquired knowledge [13].

44

The original neural network models date back to the 1940’s, and was only able to
solve simple linear problems based on simple binary decision units. The early
implementations of neural networks only included an input and output layer, and were
only capable of classifying linearly separable data patterns. Further investigation and
development led to the inclusion of a hidden layer and more a complex architecture for
each neuron. This allowed the neural network models to begin to solve more complex
nonlinear problems. It was not until the invention of back propagation in the 1980°s that
neural networks finally began to realize their potential as an adaptive learning machine.

An abundance of research has been conducted within the field of artificial neural
networks. The procedure used to perform the learning process, called the learning
algorithm, concerns the modification of the synaptic weights of the network in an orderly
fashion to attain a desired learning objective. The modification of the synaptic weights
has provided researchers with various implementations in the design of neural networks.
The modification of the topology of neural networks has also caught the interest of many
researchers motivated by the fact that neurons in the brain often die and new synaptic
weights are allowed to grow in their place.

Neural network applications offer a wide variety of useful properties and
beneficial capabilities. Neural networks have a built-in capability to adapt their synaptic
weights to changes in their environment. This allows applications in input-output
mapping and the solving of both linear and nonlinear problems. It can be applied to
pattern recognition and data classification, where contextual information is dealt with
naturally by the network. From a hardware perspective, neural networks have the

potential to be inherently fault tolerant, or capable of robust computation due to the

45

distributed nature of information stored in the network. Due to the massively parallel
nature of a neural network, it is well suited for the implementation very-large-scale-
integrated (VLSI) technology [13]. The list of applications and benefits go on, but
suffice it to say it makes for a perfect candidate for comparison to the artificial immune

system negative selection algorithm.

4.2 Artificial Neural Network Model

Artificial neural networks are suitable for cases where the input-output classification of
data is known, but no distinguishable pattern can be easily modeled to determine the
distinction. The artificial neural network approach is a generic technique for mapping the
relationship between inputs and outputs and requires less expertise and experimentation
than traditional modeling of non-linear multivariate systems. The neural network learns
the input-output mapping of a system through an iterative training and learning process.
It contains the built-in ability to update its acquired knowledge on-line for each iteration
of training. This automatic learning property makes a neural network based system
inherently adaptive and ideal for data classification [24].

The artificial neural network model implemented in this study is a multilayer
feedforward network trained with back propagation. The fundamental unit of this model
is the neuron, known as a multilayer perceptron (MLP). Figure 4.1 illustrates the basic
concept of a multilayer perceptron. The input signals x; are multiplied with their
respective weights w; and then summed together along with the bias b; of each node to
form the intermediate value v;. The weighted connections w; can take on either a positive

value (exciter) or negative value (inhibitor) to guide the output signal to the desired

46

value. The intermediate value v; is subjected to an activation function f; that transforms
the net input of the perceptron depending on the desired range of the output. The final

result of the perceptron is the output value y; [21].

X
Summing o
Junction Aftl"ﬂ'tlﬂn
Function
Input { i, j) 1 Qutput
Signals (v, i
X
L Bias Unit b;

Figure 4.1: Basic Structure of a Multilayer Perceptron [21]

The general layout of a fully constructed feedforward network consists of an input
layer, hidden layers, and an output layer. The input layer receives the first set of training
data, such as an n-dimensional vector of data whose desired output is known. The hidden
layers consist of an interconnected network of multilayer perceptrons to perform the
learning process. The final layer of the neural network is the output layer, which
produces a final output based on the classification criteria. The output layer could be as
simple as producing a ‘1’ for self or ‘0’ for nonself, if related to the artificial immune
system negative selection algorithm. Figure 4.2 shows the architecture of an artificial

neural network model utilizing multilayer perceptrons.

L

-[2]
W

,[1]

- IO

,[1]

- I]

i (inpuft)
Layer1

%
lo
Z f(VjO)
—> yk.».
{21
\ i
Z f(le)
—» yl'ﬁ
12]
\ I
Z f(vjz)
j (hidden) k (output)
Layer 2 Layer 3

Figure 4.2: Architecture of an Artificial Neural Network

From Figure 4.2, the value specified by the superscript w*! represents the current

layer of the variable shown. The subscript represents the node at which the variable is

47

located, and the case of multiple subscripts such as wj;;, the weight w;; is stated as

connecting node ‘j’ in the current layer to node ‘i’ from the previous layer. In terms of

each multilayer perceptron, the intermediate value v; for a node in a particular layer is

calculated according to Equation 4.1, where N represents the total number of nodes in the

previous layer. The output of the same multilayer perceptron is then calculated according

to the activation function f, and is defined in Equation 4.2. The activation function can

take on many forms designated by the desired output for data classification.

48

N

Intermediate Value : v, = ZW_N Vii (4.1)
i=1

Output Value : y, =fv, +b) (4.2)

The activation function, denoted by f(vi), defines the output of a neuron in terms
of the intermediate value vi. The most basic activation function is the threshold function,
where any positive value of v; outputs a ‘1’, and any negative value outputs a ‘0’
(equation 4.3). This function is primarily implemented for data sets which require simple
binary outputs. The next activation function, the logistic function, performs in a similar
manner to the threshold function, except the output takes on a value between [0, 1].

Figure 4.3 illustrates the subtle differences between the threshold and logistic activation

functions.
. 1 v.20
Threshold Function : f(v,.) = {0’ Yo 4.3
I . 1
Logistic Function : fv)=—— (4.4)
l+e ™"
- - fo| A
: J(w) | : Increasing T
a
| 1 1 | 1 1 . 1 L 1
=2:0=1y =1 =035 0 0.5 1 1.5 2 -10 -8 -6 -4 -2 0 2 4 6 8 10
v v
a) Threshold Function b) Logistic Function

Figure 4.3: Plots of Different Activation Functions [13]

49

When the desired range of the output is [-1, 1], the logistic function is often
replaced by the hyperbolic tangent function, expressed as f(vi) = tanh(av;). Equation 4.5
shows a more practical implementation of the hyperbolic tangent function. It is worth
noting that each of the previously mentioned activation functions accept inputs within the
range [-oo,00]. When the classification of data sets requires multiple outputs, and each
output belongs to a different class, the softmax function is an ideal choice. The softmax
function, presented in Equation 4.6, forces all of the outputs to sum up to one. Each

output of the softmax function is interpreted as probabilities that the input is of a specific

type [21].
ea'v, _ e—av,
Hyperbolic Tangent Function : J) = m (4.5)
p— ev}
Softmax Function : Jv) =—= ’ (4.6)

4.3 Learning Process of an Artificial Neural Network

A properly trained neural network must configure its parameters so that the given inputs
yield an output which matches the desired outputs. To correspond with the real-valued
negative selection algorithms, the neural network model proposed in this study has only a
single output node to discriminate between self and non-self data. To begin, first let a
training sample be denoted by (xk, di), where Xy is the stimulus applied to the input layer

and d is the desired output for that specific input. Let yx denote the actual output

50

produced by the input xi at the output layer of the neural network. Correspondingly, the
error signal produced at the output layer is defined as ex = d« — yk. This is the
instantaneous error for one output associated with one input pattern in the training set.
From this metric, the general measure of a neural network’s performance is defined as the
mean squared error, (where P is the total number of input training patterns). The mean

squared error (MSE) is the basis for the stopping criteria of the network (equation 4.7).

Mean Squared Error : MSE = ii lgp 4.7)

p=I

|
Instantaneous Mean Squared Error : Instant MSE =?€' (4.8)

The first decision to make when training a neural network is which type of
supervised learning method to use. In this research, on-line learning is employed; that is,
adjustments to the synaptic weights of each multilayer perceptron are performed on an
example-by-example basis. The cost function to be minimized is the instantaneous mean
squared error described above. The advantages of using on-line learning are its ability to
track small changes in the training data, thereby providing effective solutions to difficult
pattern-classification problems and ease of implementation [13].

There are a variety of options proposed and available to adjust the parameters of
the network to achieve the desired input/output matching needed for proper data
classification. One of the earliest and most popular of these options is the back

propagation algorithm. The updated value of a synaptic weight is simply adjusted by the

51

addition of a correction term to the previous weight, Wjinew = Wjiola + 4Wji. The
correction term is proportional to the partial derivative of the energy function with
respect to the corresponding synaptic weight (equation 4.8). Neglecting the derivation, it
is proven that this equation simplifies to the more elegant solution in equation 4.9 [13].
The learning rate » controls the changes to the synaptic weights in the network. The
smaller the value of #, the slower the rate of learning; however, increasing the parameter

too large may lead to the network become unstable (oscillatory).

_ _ o€
Weight Correction Term : Aw” =n (4.8)
. aw,".i
where the instantaneous error & = dy -y«
Weight Correction Term (simplified) : Awﬁ = 775],% (4.9)

The term oj, referred to as the local gradient, defines the required changes in the
synaptic weights based on the activation function and instantaneous error signal. The
local gradient is defined separately for the cases when the neuron is an output node or a
hidden node. For an output node j, the local gradient ¢; is equal to the product of the
corresponding error signal e; for that neuron and the derivative f;’(v;) of the associated
activation function. The activation function implemented in this study is the logistic
function, and the associated derivative simplifies to Equation 4.10 [13]. Therefore, in the

case of an output neuron j, the local gradient d; is defined as Equation 4.11.

52

Derivative of Logistic Function : j?('lj.)=ayj(l - y,) (4.10)
Local Gradient for Output Neuron j 5}: e‘].ayj(l — y].) (4.11)

When neuron j is located in a hidden layer of the network, there is no specified
desired response for that neuron. The error signal for a hidden neuron must be
determined recursively, working backwards in terms of the error signals of all neurons to
which that hidden neuron is directly connected. This is where the name back propagation
originates. Equation 4.12 describes the back propagation formula for the local gradient
of a hidden neuron j after simplifying the derivative of the logistic function [13]. The

formula utilized to update the synaptic weights is now generalized to Equation 4.13.
©

Local Gradient for Hidden Neuron j : é}:ayj(l — yli_)Z@_ Wy (4.12)
k

Synaptic Weight Update Formula : Wiinew = Wit 775,' Vi (4.13)

For the on-line learning approach utilized in this study, an input sample pattern is
fed into the network and an error signal is produced. The error signal is then back
propagated through the network to adjust the synaptic weights for each neuron. The
iteration of forward and backward computations repeats until all input samples within the
training set have been exhausted. The order of the training samples is then randomly
rearranged and another training pass is conducted. This training continues to repeat until

a preset number of iterations are reached. After the preset number of training iterations

53

completes, the weights are fixed and the neural network calculates the average MSE from
all input-output pairs. If the MSE is less then some preset threshold, MSE, then the
algorithm terminates and testing begins. If the MSE is greater than the threshold, it
resumes training for another preset number of iterations.

The testing phase of the neural network is very similar to the detection phase of
the negative selection algorithm. Each unknown data instance is presented to the
algorithm, and the network produces an output corresponding to the class in which the
data belongs. To remain consistent with the negative selection algorithm, the neural
network algorithm produces an output value between [0, 1]. A decision threshold of 0.5
either classifies the data as ‘1’ (self) if yout > 0.5 or ‘0’ (non-self) if yout < 0.5. Figure 4.4

provides pseudo code for the neural network algorithm on the following page.

54

Multilayer Feedforward Neural Network with Back Propagation
(1 Hidden Layer)
Initialize parameters: a, 5, bias (b), MSE ,iter_countmax
Randomly assign weights with zero mean, std = 1.0
iter_count=0
Begin Training Phase:
While (iter_count<iter_countmax)
Randomly rearrange Training Set P1,
For p=1, P1 (where P1 is total # input-output pairs of training set),
Assign the input of training sample to y;,
Calculate v; = sum(yi*w;;) + bi*Wyi,
Calculate logistic function output, y; = 1/ (1 + exp(-a*v;)),
Calculate vy for output neuron, vi = sum(y;*wy ;) + bj*Wh;,
Calculate logistic function output, yx = 1/ (1 + exp(-a*vy)),
Calculate error signal, ex = (dx — Y),
(Begin Back Propagation)
Calculate local gradient of output, dx = a*ex *yi*(1-yi),
Update weights of output layer, Wi jnew = Wi joid + (7* d*Vj),
Calculate local gradient of hidden layer, d; = a*y;*(1-y;)*sum (0x* W),
Update weights of hidden layer, Wjinew = Wjiold + (17 * d;*Vi),
End For
iter_count=iter_count+1,
End While
Stopping Criteria:
Calculate MSE = 1/P1 sum(ei® / 2) for P1 training samples
If (MSE < MSEy,)
End Training Phase, move down to Testing Phase,
Else
iter_count=0,
Resume Training Phase,
End If
Begin Testing Phase:
For p=1, P2 (where P2 is total # input-output pairs for testing set)
Assign the input of testing sample to y;,
Calculate v; = sum(yi*w;,i) + bi*Wh;,
Calculate logistic function output, y; = 1/ (1 + exp(-a*vj)),
Calculate vy for output neuron, v = sum(y;*wy ;) + bj*Wh;,
Calculate logistic function output, yx =1/ (1 + exp(-a*vy)),
Ifyx>0.5
Classify as self
Else
Classify as non-self
End if
End For

Figure 4.4: Multilayer Feedforward Neural Network Algorithm Pseudo-code

55

CHAPTER 5

Testing and Results

The purpose of this study is to evaluate the affects of different distance metric on three
distinct implementations of the real-valued negative selection algorithm. The
implementation of a multilayer feedforward neural network with back propagation is
employed as a comparison model, traditionally utilized in the field of computational
intelligence for data classification. This chapter discusses the datasets utilized in testing
in meticulous detail. The discussion includes the methodology behind the
implementation of each algorithm, along with the experimental techniques to optimize
each algorithm. The study includes balanced testing procedures and explanations of
experimental decisions to handle distinctions between the neural network and negative
selection algorithms. The chapter concludes with experimental results and final

conclusions based on these results.

5.1 Datasets

Three distinct datasets are used in the experiments implemented in this study. The first
dataset is the famous Fisher's Iris Dataset [2], which has been widely used in
discrimination analysis. The dataset consists of 50 samples from each of three species of

Iris flowers (Iris setosa, Iris virginica and Iris versicolor). Four distinct features were

56

measured from each sample; the length and the width of sepal and petal. Therefore, the
data set includes 150 total datasets, each a vector of four dimensions.

To better understand the distribution of the Fisher Iris dataset, plots were
generated to graphically illustrate the datasets characteristics in two dimensions. Figure
5.1 shows the plot of the first two dimensions, sepal length and width, while Figure 5.2
provides the third and fourth dimensions, petal length and width. Before the plots were

produced, the datasets were first normalized to values between [0, 1].

¢ Setosa
= Versicolor
0-65 Virginica
0.6 05
L J
. 4
0.55 - " “:& *
y
"3 o
o0,
0.5 L d
=
S
=2
; 0.45 *
©
o 04 =
@ []
w "sm “l.; ™ =
'y a
L}
L] L™
0.3 —a—A =
|
|
0.25
0.2
0.65 0.7 0.75 0.8 0.85 0.9
Sepal Length

Figure 5.1: Distribution of 1% and 2" Dimensions of Iris Dataset

¢ Setosa
= Versicolor
03 Virginica
0.25 oA
‘
0.2 - 1
< aLgn® n
oo - |} |}
€ LY
=1 0.15
[]
I L
;]
o
0.1 ry
*
K
0.05 L S
. A2
4 *
[® @ ¢
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7
Petal Width

Figure 5.2: Distribution of 3" and 4™ Dimensions of Iris Dataset

57

The Iris-Setosa data shown in blue is clearly separated from the other two
datasets, making classification easy. The remaining two datasets, Iris-Versicolor in violet
and Iris-Virginica in green, are intermingled but centralized. While this makes data
classification more difficult, the fact that each dataset is clustered close together makes
discrimination less cumbersome than the next dataset to be discussed.

The second dataset, referred to as Biomedical Data [22], is from blood
measurements of 194 patients, after removing those datasets which are missing data
points. The dataset arose in a study to develop screening methods to identify carriers of a
rare genetic disorder. Of the 194 datasets, 127 are classified as “normal” or free of the
disorder, and the other 67 are identified as “carriers” of the disorder. Each patient had
four different types of blood measurements, yielding a total of 194 data sets with four
data points in each set.

Figures 5.3 provides perspective of the dataset’s distribution for the first two
dimensions, and Figure 5.4 displays the third and fourth dimensions. Clearly, the
distribution of the Biomedical Dataset is much more complicated than the Iris Dataset.
The normal dataset in blue is heavily intermingled within a cluster of carrier data points,
and proves to be very difficult to discriminate precisely. The carrier dataset is slightly
easier to classify because some outlier points are easily separable from the central cluster

of data points.

58

¢ Normal
= Carrier
0.8 -
0.7
2 « ¢
ﬂl ne
0.6
g ¢ g‘ bo o
-
5 ‘,.' o HW_ o *
w 05 L 8 +
3 IN" v R 1: - o
R R (R A CW -
- « o,
3] [
o g3 o
o . f-of‘l-"‘ . -
o 03 n, o * " i B Y =
T me a N n - n
c . b]
N 02 o a8 -
]
¢ . LI | []
0.1 | -
[]
0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1st Blood Measurement

Figure 5.3: Distribution of 1% and 2™ Dimensions of Biomedical Dataset

¢ Normal
1 = Carrier
0.9 i
*
c 08
ﬂJ
£
207
=1
@
P
S 06
- *
[=] n =
L o5
o n []
|

k- .
< 04

0.3

" []
0.2
0 0.05 0.1 0.15 0.2 0.25
3rd Blood Measurement

Figure 5.4: Distribution of 3" and 4™ Dimensions of Biomedical Dataset

The final dataset tested in this study is the BUPA Liver Disorder [2].
Performed by the BUPA Medical Research Ltd, the first 5 variables are all blood tests
which are thought to be sensitive to liver disorders that might arise from excessive
alcohol consumption; the last variable represents the number of alcoholic beverages

consumed daily. The dataset comprises measurements of 345 patients, 200 of which

59

were designated “clean” from the disorder; the remaining 145 are labeled as “disorder”.
Figures 5.5 — 5.7 illustrate the distribution of the data for the 1%-2", 3"-4" and 5"-6"
dimensions respectively. The complex distribution and increase in dimensionality and

sample size over the Biomedical Dataset made this an ideal choice for the final dataset.

+ Disorder
= Clean

0.9

0.8

0.7

0.6

0.5

2nd Measurement

0.3

0.2

0.1
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
1st Measurement

Figure 5.5: Distribution of 1% and 2" Dimensions of BUPA Dataset

Normalized BUPA Data (3rd & 4th) + Disorder
= Clean
0.45
| |
0.4]
0.35 .
-
:,E, 0.3 . _
*

£
D025 -
2 *
@
o 02 n
=
<
g 0.15

0.1

|
0.05 -
0
0 0.1 0.2 0.3 0.4 05 06 07
3rd Measurement

Figure 5.6: Distribution of 3" and 4™ Dimensions of BUPA Dataset

60

Normalized BUPA Data (5th & 6th) + Disorder
= Clean
0.14
*
012
*
01
c .
) \ .
E | *
© 0.08 - Ll
]
3 pig o * m o L]
@ .] [}
2 006 {— LR A e
= el o 'n " .
g = o.oI e om n . * n
oo SRR TF
|}
Jltﬂ'f w " +u/m e ®] ®
0.02 0'\0-. o e [» o »
X ‘.-i“l, o Eo iC] L]]
Rt o B * L
o ‘*--*-."-.- aly 0]
0 01 02 03 04 05 06 07 08 09 1
5th Measurement

Figure 5.7: Distribution of 5™ and 6" Dimensions of BUPA Dataset

5.2 Testing Methodology and Algorithm Optimization

This section describes the various testing methodologies and optimization techniques to
produce the best possible results for each algorithm. It revisits several references to the
algorithms proposed in the previous chapters and how minor adjustments can achieve
optimal implementations. The section concludes by covering general similarities that
each implementation shares and formally discussing the distinctions of each algorithm
separately.

The general purpose of this study is to test an algorithm’s ability to classify real-
valued data. For the generation (or training) phase of each negative selection algorithm,
the input data consists of only self data. In this study, self data is assigned separately to
each class of data. In regards to the Iris dataset, one type of flower is designated as self,
while the other two are assumed non-self. Therefore, three separate tests are conducted
for the Iris dataset, one for each class of flower assigned as self. Since the remaining two

datasets only have two classes, only two separate tests are conducted for each dataset.

61

The self data assignment to a dataset is further separated into different test cases.
The methodology implemented in this study analyzes two cases, one in which the
negative selection algorithm is trained with 100% of the self data class, and the other is
trained with only 50% of the self data class. This results in fourteen separate tests for a
single negative selection algorithm with a specific distance metric. Each test is trained
with the following self data classes: 100% Setosa, 50% Setosa, 100% Versicolor, 50%
Versicolor, 100% Virginica, 50% Virginica, 100% Normal, 50% Normal, 100% Carrier,
50% Carrier, 100% Clean, 50% Clean, 100% Disorder and 50% Disorder.

There is a major distinction between the negative selection and neural network
algorithm. While a negative selection algorithm, by design, requires training of only one
class of data, the neural network algorithm must be trained with samples from both
classes of data. The results section of this chapter provides evidence to support this
claim, and led to modifications to the training data to address this issue. The final portion
of this section will address these changes along with a formal discussion of the
implementation of the neural network model.

Originally introduced by the first implementation of a real-valued negative
selection algorithm, two performance metrics are utilized to evaluate their effectiveness,
the detection rate and false alarm rate [10]. The detection rate (DR) is defined as the
number of correctly identified non-self points divided by the total number of non-self
data points multiplied by 100%. This yields a percentage of correctly identified non-self
points, signifying how well the algorithm detected anomalies. Conversely, the false
alarm rate (FA) is calculated as the number of self points classified incorrectly divided by

the total number of self data points. This produces a percentage of self points classified

62

incorrectly, signifying how poorly the algorithm misclassified self data as an anomaly. A
figure of merit (FOM) is formulated for the need to determine an overall final score for
the performance of the algorithm, which is defined as the false alarm rate subtracted from
the detection rate (DR-FA). The figure of merit is a method of comparing how well the
algorithm detects anomalies while simultaneously penalizing it for self misclassifications.

The real-valued negative selection algorithm with a fixed-sized radius is the first
model implemented in this study. The initialization of the control parameters vary for
each dataset to achieve the best performance. For the Iris Dataset, the adaptation rate 7,
= 0.005, the decay rate z = 15, the maximum age t = 15, and the total number of
detectors is 1000. For the Biomedical Dataset, the adaptation rate 7, = 0.0025, the decay
rate = 10, the maximum age t = 15, and the total number of detectors is 1000. For the
BUPA Dataset, the adaptation rate 7, = 0.0025, the decay rate = 10, the maximum age t
= 15, and the total number of detectors is 5000. The major difference for the BUPA
dataset implementation is the total number of detectors generated, which was required to
produce adequate coverage of the non-self space.

Several experimental tests are performed to decide the ideal values of control
parameters. The most crucial control parameter i.e., detector radius r, requires extensive
analysis to determine the optimal value. The worst case scenario defined as the most
difficult dataset implementation to correctly classify is identified for each dataset: 1) Iris
Dataset = 50% Virginica, 2) Biomedical Dataset = 50% Normal, and 3) BUPA Dataset
= 50% Clean. Five seed detectors sets are randomly generated for implementation of
various detector radii. The FOM proposed earlier is the basis for measuring the

efficiency of each test, and is averaged over the five seed detector results to yield an

63

overall percentage of accuracy. Understanding that each distance metric will attain
optimal results for different detector radii, each distance metric is tested for each dataset.
The optimization results are plotted with the radius along the x-axis and the average FOM
along the y-axis, and are displayed in Figures 5.8 - 5.10.

Similar testing strategies are employed to determine an optimal number of
detectors for the BUPA Dataset. The initial attempts to optimize the BUPA data are
highly unsuccessful with only 1000 detectors. The five seed detectors are again utilized
using only the Euclidean distance measure to determine an adequate number of detectors
to produce sufficient results. While even at 5000 detectors the Euclidean FOM scores
seemed low, by performing optimization techniques for the remaining distance metrics it
is concluded that 5000 detectors is sufficient. Increasing beyond 5000 detectors required
extensive time consumption (48-72 hours), and often resulted in algorithm failure due to
the impossibility to ‘fit” more detectors into the non-self subspace. Figure 5.11 shows a
plot of the effects of increasing detector counts corresponding to a change in radius and

FOM score.

FOM

0 0.05 0.1 0.15 0.2 0.25
Radius

Figure 5.8: Iris Data Radius Optimization Plot for Various Distance Metrics

FOM

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
Radius

Figure 5.9: Biomedical Data Radius Optimization Plot for Various Distance Metrics

64

FOM

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
Radius

Figure 5.10: BUPA Data Radius Optimization Plot for Various Distance Metrics

FOM

0 0.05 0.1 0.15 0.2 0.25 0.3
Radius

Figure 5.11: Detector Count Optimization Plot for Euclidean Distance Metric

65

66

For the real-valued negative selection algorithm using a fixed-sized radius,
making a slight modification assists in the detector placement. Previously, a detector is
only stored if the minimum calculated distance to the nearest self point or nearest detector
center is greater than the detector threshold radius r. As the number of detectors stored
increases, it is difficult to allow space for more incoming detectors to find placement. A
modification to the placement criterion allows detector overlap and results in multiple
benefits. The detector is still required to remain a fixed distance r from the nearest self
point, but is now allowed to be within 0.25r to the nearest detector. This amount of
detector overlap allows the possibility of a greater number of detectors to be placed, and
also increases the amount of non-self subspace coverage. By allowing overlap, the
‘holes’ produced by detectors spaced a distance r away from each other are now filled,
since the radius of each detector still remains fixed at r.

Formal presentation of individual radius assignments and analysis of the final
results for the fixed-sized detector algorithm are covered in the next section of this
chapter. The next topic of discussion is the V-detector algorithm, a new sophisticated and
intelligent approach to the negative selection algorithm.

Two different implementations of the real-valued negative selection algorithm
with variable detectors (V-detector) are tested. The first implementation is exactly the
same as the proposed algorithm in Chapter 3. The two control parameters, estimated
coverage ¢, and maximum number of detectors Dmax, are predetermined for each data set
as: 1) Iris 2 ¢, = 99.9%, Dpnax = 250, 2) Biomedical = ¢, = 99.99%, Dmax = 250, and 3)

BUPA =2 ¢, = 99.98%, Dyax = 1000. The self radius, r, is still the same as the detector

67

radius implemented in the fixed sized detector algorithm. This first implementation did
not yield satisfactory results, and required several modifications to achieve optimal
results.

The optimized second implementation of the V-detector algorithm produces
superior results over the original method. The estimated coverage ¢, and maximum
number of detectors Dmax are not changed, but the self radius threshold is modified.
Similarly as before, several tests are performed to determine the optimal value of the self
radius. For both the Iris and Biomedical datasets, a unique method is employed which
sets the self radius as the average standard deviation of the training data samples. This
allows the self radius threshold to vary proportionally to the distribution of the self data.
The BUPA dataset did not allow this methodology, because the distribution of the data
across six dimensions varies so much that the standard deviation was too large to
adequately represent the self radius. For the BUPA dataset, individual self radius
optimization tests are required for each distance metric to produce optimal results.
Similar to the fixed sized radius algorithm, detector overlap is also implemented in the
modified V-detector algorithm. This allows the possibility of the placement of a greater
number of detectors before the estimated coverage is reached, and simultaneously
removes ‘holes’ and improves non-self space coverage.

Additional modifications are devised for the second implementation of the V-
detector algorithm. In Chapter 3, two methods are discussed regarding the assignment to
the variable radius ry. It is specified that this study implements the aggressive approach,
where ry is set equal to the minimum distance to the nearest self point. This value is

actually modified to allow a small amount of variability in the self data. Instead of

68

assigning rq = dist_min, the modified variable radius is rg = (dist_min*(1-r5)). By
performing this modification, if rs=0.01, then ry= dist min*.99, or 99% of dist_min.
While this may seem counter intuitive to achieving better non-self coverage, it actually
decreases false alarm rates greatly while minimally lowering detection rates, therefore
improving FOM scores.

The final real-valued negative selection algorithm implementation is the
proliferating V-detector. Like the V-detector algorithm, there are tests for two separate
implementations of this algorithm. The first implementation utilizes the same radius
assignment from the fixed-sized algorithm for the self radius rs. The proliferation
consists of three stages, where the additional threshold 6 = rs for the initial generation
stage. For each subsequent proliferation stage, 6 takes on the following values: 1% stage
= (0.5* r5), 2" stage = (0.25* r5), and 3" stage = (9=0). The estimated coverage and
maximum number of detectors are the same for each dataset, ¢, = 99.98% and Dpyax =
250. Due to the poor choice of rs and three stages of proliferation, this algorithm
produces poor results with the longest runtime (72+ hrs).

The modified proliferating V-detector algorithm makes several improvements
over the initial implementation. First, the self radius is optimized for each particular
dataset, as performed for the various algorithms previously. The standard deviation did
not provide adequate results for this algorithm, so optimized values were chosen by the
iterative testing process of comparing FOM scores for each radius assignment. The
maximum number of detectors is raised to Dmax = 500, and estimated coverage is

increased to ¢, = 99.99%. Because the proliferating V-detector implementation produces

69

overlapping offspring detectors which fills ‘holes’ adequately by design, no additional
detector overlap was needed.

The modified proliferating V-detector algorithm only implements two stages of
detector proliferation. Experimental tests proved that three-stage proliferation increased
the total number of detectors generated with little to no change in the overall figure of
merit score. The only factor which increased dramatically was the amount of time each
algorithm required to run a single trial. The final modification is similar to the variable
radius assignment implemented in the modified V-detector algorithm. For the modified
proliferating V-detector algorithm, the final stage of proliferation does not assign the
threshold =0, but rather allows small percentage of the threshold to remain. In the final
stage of proliferation, the variable radius is rq = (dist_min —(0./ * 6)). Again, this is
performed to decrease false alarm rates while minimally affecting detection rates,
producing improved figure of merit scores.

The final algorithm in this discussion is the multilayer feedforward neural
network model. The neural network model consists of one hidden layer with fifteen
hidden neurons. The control parameters were preset identically for each dataset, with the
learning rate » = 0.2, a = 1 and all bias values bj = 1. To achieve optimal results, the
stopping criteria threshold MSEy, was decreased for each experimental test until the
algorithm was no longer capable of converging. The minimal values of MSEy, yielding
optimal results are 0.01 for the Iris Dataset, 0 .07 for Bio, and 0.08 for BUPA.

A major distinction between the neural network and negative selection algorithm
concerns the choice of training data. For a negative selection algorithm, the input to the

system consists of only self data, either 100% or 50%. The neural network model, by

70

design, cannot be trained with only self data. If the training data all share the same
desired value, for example self = 1, then the dynamics of the back propagation algorithm
fail to train the algorithm properly to identify any new incoming data instance as anything
besides 1. Future testing procedures in the next section will prove this hypothesis.
Because the neural network cannot be trained with only self data, a new methodology is
required to implement a fair training comparison.

Similarly to the negative selection algorithm training with 100% and 50% of
the self data, for the neural network the datasets are split into two training sets, 50% and
25%. The 50% training set consists of 50% self data and 50% non-self data. Likewise,
the 25% training set consists of 25% self data and 25% non-self data. Table 5.1 shows
the training data distribution. Note for the Iris Dataset there are three classes of data, and
therefore three versions of each training dataset were formulated, in which the flower of
interest is designated as self. For the Iris non-self column in Table 5.1, the addition

equation represents the number of datasets from each flower designated as non-self.

Training Set Self Non-self Total Data Sets
50% Iris 25 25+ 25=50 75
25% Iris 13 13+13=26 39
50% Bio 64 Normal 33 Carrier 97
25% Bio 32 Normal 17 Carrier 49
50% BUPA 72 Clean 100 Disorder 172
25% BUPA 36 Clean 50 Disorder 86

Table 5.1: Training Data Distribution for Neural Network Implementation

71

5.3 Experimental Testing and Results

The implementation of each algorithm depends on a certain degree of randomness, from
the detector generation placement of the negative selection algorithm to the initial weight
assignments of the neural network model. Due to highly random nature of each
algorithm, 50 trials are conducted for each experimental test performed. Consider for
each negative selection algorithm implemented using a different distance metric, 14
distinct datasets are tested. Five total negative selection algorithm versions are tested; the
fixed sized detector, two versions of the V-detector, and two versions of the proliferating
V-detector algorithm. Each version is tested for five different distance metrics. The
neural network model required ten different dataset configurations, which combined with
the 350 unique negative selection tests; means a total of 360 experimental tests are
performed. Because each test was averaged over 50 trials, the total number of
experimental trials conducted is 18,000. This does not include the several hundreds of
tests performed to achieve optimal results before each final test is implemented.

The experimental testing for each real-valued negative selection algorithm yields
four important performance metrics. The detection rate (DR) yields a percentage of
correctly identified non-self points, while the false alarm rate (FA) produces a percentage
of self points classified incorrectly. The figure of merit (FOM) is a method of comparing
how well the algorithm detects anomalies while simultaneously penalizing it for self
misclassifications, and is a byproduct of detection rate and false alarm rate, calculated as
(DR-FA). The fourth performance metric is the average total number of detectors

implemented for each test. While not an actual measure of the algorithm’s efficiency, it

72

is discussed later as an additional method of comparison to determine the best candidate
when implementing a negative selection algorithm.

The first real-valued negative selection algorithm tested was for the case of fixed
sized detectors. The results for each distance metric for the Iris dataset are provided in
Tables 5.2-5.6. This is only a sample of the results tabulated to illustrate content and
formatting for each experimental trial. There are over 75 tables of results produced for
this study, and the inclusion of an appendix of results is neglected to reduce the number
of pages for this report. Appendix A provides a brief comprehension of the intermediate
results for detection rate and false alarm rate. A complete catalogue of data tables and

specific Matlab code implementations is in the accompanying CD-ROM included with

this report.
FINAL RESULTS | Detection Rate (%) False Alarm (%) F.O.M. Detector Count
Datasets Mean Std. Dev. Mean Std. Dev. | (DR%-FA%) | Mean Std. Dev.
Setosa 100% 100 0 0 0 100.00 1000 0
Setosa 50% 100 0 10.18 1.623 89.82 1000 0
Versicolor 100% | 91.36 4.758 0 0 91.36 1000 0
Versicolor 50% 95.02 3.491 12.64 4.052 82.38 1000 0
Virginica 100% 95.34 5.113 0 0 95.34 1000 0
Virginica 50% 97.16 1.687 16.04 5.085 81.12 1000 0

Table 5.2: Final Results for Fixed Sized Radius using Manhattan Distance Metric

FINAL RESULTS | Detection Rate (%) False Alarm (%) F.O.M. Detector Count
Datasets Mean Std. Dev. Mean Std. Dev. | (DR%-FA%) | Mean Std. Dev.

Setosa 100% 100 0 0 0 100.00 1000 0
Setosa 50% 100 0 7.56 3.199 92.44 1000 0
Versicolor 100% 83.7 10.07 0 0 83.70 1000 0
Versicolor 50% 89.04 7.473 8.32 3.33 80.72 1000 0
Virginica 100% 93.38 8.166 0 0 93.38 1000 0
Virginica 50% 92.3 10.809 13.12 4,734 79.18 1000 0

Table 5.3: Final Results for Fixed Sized Radius using Euclidean Distance Metric

73

FINAL RESULTS | Detection Rate (%) | False Alarm (%) F.O.M. Detector Count
Datasets Mean Std. Dev. Mean Std. Dev. | (DR%-FA%) | Mean Std. Dev.

Setosa 100% 99.88 0.5206 0 0 99.88 1000 0
Setosa 50% 99.92 0.338 6.96 3 92.96 1000 0
Versicolor 100% | 79.78 11.07 0 0 79.78 1000 0
Versicolor 50% 86.18 9.652 8.84 3.504 77.34 1000 0
Virginica 100% 87.44 11.362 0 0 87.44 1000 0
Virginica 50% 92.42 8.379 11.44 5.267 80.98 1000 0

Table 5.4: Final Results for Fixed Sized Radius using 3-Norm Distance Metric

FINAL RESULTS | Detection Rate (%) False Alarm (%) F.O.M. Detector Count
Datasets Mean Std. Dev. Mean Std. Dev. | (DR%-FA%) | Mean Std. Dev.

Setosa 100% 100 0 0 0 100 1000 0
Setosa 50% 100 0 12.4 4.37 87.6 1000 0
Versicolor 100% | 93.76 3.1 0 0 93.76 1000 0
Versicolor 50% 97.54 1.89 16.08 3.49 81.46 1000 0
Virginica 100% 96.4 2.55 0 0 96.4 1000 0
Virginica 50% 97.54 1.71 21.8 4.77 75.74 1000 0

Table 5.5: Final Results for Fixed Sized Radius using co-Norm Distance Metric

FINAL RESULTS | Detection Rate (%) False Alarm (%) F.O.M. Detector Count
Datasets Mean Std. Dev. Mean Std. Dev. | (DR%-FA%) | Mean Std. Dev.

Setosa 100% 100 0 0 0 100 1000 0
Setosa 50% 100 0 13.52 1.42 86.48 1000 0
Versicolor 100% | 92.62 1.028 0 0 92.62 1000 0
Versicolor 50% 97.86 0.869 16.08 1.744 81.78 1000 0
Virginica 100% 98.98 0.141 0 0 98.98 1000 0
Virginica 50% 99 0 24.6 2.16 74.4 1000 0

Table 5.6: Final Results for Fixed Sized Radius using Partial Euclidean Distance Metric

The FOM performance metric is tabulated in the previous result tables for each

designated training dataset.

The computation of the average FOM score for each

algorithm implementation uses two separate methods. The total FOM score represents

the average FOM of all data training sets, simply computed by averaging all data in the

74

FOM column. The 50% FOM score is the average FOM score only for the cases when
50% of the self data is utilized for training. This score is indicative of the case when not
all ‘self” data is available for training, and provides better insight into the efficiency of
each algorithm. Table 5.7 is a condensed version of the final results for the negative

selection algorithm using fixed sized detectors for each dataset, which only includes the

designation of the detector radius and two FOM performance metrics.

Radius Distance Metric Total FOM | 50% FOM D#
Iris Dataset

Constant R=0.1 Euclidean 88.24 84.11 1000
Constant R=0.1 Manhattan 90.00 84.44 1000
Constant R=0.06 Partial Euclidean (Window) 89.04 80.89 1000
Constant R=0.1 3-Norm 86.40 83.76 1000
Constant R=0.2 Infinity Norm (MAX) 89.16 81.60 1000
Biomedical Dataset

Constant R=0.15 Euclidean 26.56 27.93 1000
Constant R=0.15 Manhattan 32.20 30.95 1000
Constant R=0.05 Partial Euclidean (Window) 59.01 53.32 1000
Constant R=0.15 3-Norm 26.89 28.39 1000
Constant R=0.25 Infinity Norm (MAX) 27.65 26.64 1000
BUPA Dataset

Constant R=0.175 Euclidean 23.49 21.86 5000
Constant R=0.2 Manhattan 36.43 32.76 5000
Constant R=0.01 Partial Euclidean (Window) 74.16 50.38 5000
Constant R=0.2 3-Norm 23.22 21.42 5000
Constant R=0.25 Infinity Norm (MAX) 24.63 21.96 5000

Table 5.7: FOM Final Results for Fixed Sized Radius

The next real-valued negative selection algorithm tested is the variable radius
technique. Two versions of the V-detector algorithm is tested. The first method employs
the same strategies proposed in Chapter 3 for the V-detector algorithm, and retains the

same value for rs designated in the previous implementation for the fixed sized radius.

75

The second method is a modified version of the V-detector algorithm, where several
aspects of the algorithm are improved to achieve optimal results. The modified V-
detector algorithm includes the additional benefit of assigning optimal values for rs based
upon several preliminary testing results. Tables 5.9 and 5.10 provides the final results for
each implementation.

An important distinction between the fixed radius and V-detector algorithms is the
assignment of the detector radius and stopping criteria. The V-detector implementation
does not rely on the generation of a fixed number of detectors, but instead relies heavily
on the estimated coverage stopping criteria. Therefore, the number of detectors generated
for each implementation of the V-detector algorithm is an important performance metric
worth mentioning. Table 5.8 is an example of the results tabulated for a single modified
V-detector algorithm trained with Biomedical Data. Notice the average number of
detectors generated and standard deviation of detector generation are now included in the
data results. The column (D #) in Tables 5.8-5.10 represents the total average of

detectors generated for every training instance.

FINAL RESULTS | Detection Rate (%) False Alarm (%) FOM Detector Count
Datasets Mean Std. Dev. Mean Std. Dev. | (DR%-FA%) Mean Std. Dev.
Normal 100% 77.55 2.61 0 0 77.55 362.52 17.57
Carriers 100% 34.65 63.4 0 0 34.65 239.16 11.01
Normal 50% 83.22 3.2 25.8 2.05 57.42 276.76 16.92
Carriers 50% 56.44 6.84 32.84 3.5 23.6 213.16 12.24
D# = 2729

Table 5.8: Final Results for Modified V-Detector using Euclidean Distance Metric

Radius Distance Metric Total FOM | 50% FOM D #

Iris Dataset

Rs=0.1 Euclidean 91.28 86.12 13.07
Rs=0.1 Manhattan 89.85 84.51 11.61
Rs=0.06 Partial Euclidean (Window) 87.89 84.69 8.65

Rs=0.1 3-Norm 91.45 86.63 14.67
Rs=0.2 Infinity Norm (MAX) 89.83 85.49 15.74
Biomedical Dataset

Rs=0.15 Euclidean 25.07 28.56 15.32
Rs=0.15 Manhattan 24.50 26.29 13.56
Rs=0.05 Partial Euclidean (Window) 53.56 45.02 42.3

Rs=0.15 3-Norm 25.28 28.64 17.45
Rs=0.25 Infinity Norm (MAX) 22.19 22.64 18.02
BUPA Dataset

Rs=0.175 Euclidean 12.75 11.04 30.69
Rs=0.2 Manhattan 10.27 10.00 18.88
Rs=0.01 Partial Euclidean (Window) 48.86 39.34 116.13
Rs=0.2 3-Norm 13.04 11.46 34.86
Rs=0.25 Infinity Norm (MAX) 16.31 14.67 53.35

Table 5.9: FOM Final Results for Original V-Detector Implementation

Radius Distance Metric Total FOM | 50% FOM D#
Iris Dataset

Rs=std(T) Euclidean 89.66 87.97 15.53
Rs=std(T) Manhattan 87.30 85.63 13.19
Rs=std(T) Partial Euclidean (Window) 88.93 85.02 11.18
Rs=std(T) 3-Norm 89.05 86.74 17.18
Rs=std(T) Infinity Norm (MAX) 87.94 86.41 19.72
Biomedical Dataset

Rs=std(T)/2 Euclidean 48.30 40.51 272.9
Rs=std(T)/2 Manhattan 48.84 40.48 235.84
Rs=std(T)/4 Partial Euclidean (Window) 51.12 50.43 123.74
Rs=std(T)/2 3-Norm 54.20 49.42 328.06
Rs=std(T)/2 Infinity Norm (MAX) 69.08 51.62 506.45
BUPA Dataset

Rs=0.025 Euclidean 63.77 50.75 831.95
Rs=0.025 Manhattan 65.32 50.54 829.14
Rs=0.001 Partial Euclidean (Window) 72.05 49.53 503.66
Rs=0.025 3-Norm 64.48 50.91 864.13
Rs=0.05 Infinity Norm (MAX) 66.68 50.47 927.99

Table 5.10: FOM Final Results for Modified V-Detector Implementation

76

77

The results for each implementation of the V-detector algorithm clearly illustrates
that the modified version outperforms over the original implementation. This comes as
no surprise, considering the modified implementation is an improved design over the
original version. The interesting aspects of the modified V-detector algorithm results
begin to surface when compared to the fixed sized radius results. An overall
improvement in figure of merit scores is displayed by the modified V-detector algorithm
approach. Even more astounding, the improvement in FOM scores results from a
decrease in the average number of detectors generated. Later in this report, a more
concise table presents results from which formal conclusions are derived.

The real-valued negative selection algorithm with proliferating variable detectors
is the final version tested. Similarly to the V-detector algorithm, there are tests for two
separate implementations of the proliferation algorithm. The first method is the original
implementation with three stages of proliferation, and the second version is a modified
and condensed two stage implementation. Tables 5.11 and 5.12 show the final figure of
merit scores for each proliferating algorithm implementation. Again, it is no surprise that
the modified version attains better overall efficiency when compared to the original
implementation.

The last test implemented in this study was a feedforward neural network model
trained with back propagation. It was mentioned previously that the comparison between
the negative selection model and neural network is not ideal. The distinction between the
two models arises in the choice of training data. A negative selection algorithm requires
only self data for training, whereas the neural network requires samples from both self

and non-self. Experimental test results provide the proof to this assumption.

Radius Distance Metric Total FOM | 50% FOM D #

Iris Dataset

Rs=0.1 Euclidean 89.34 83.69 120.51
Rs=0.1 Manhattan 89.83 83.73 68.68
Rs=0.06 Partial Euclidean (Window) 84.90 82.95 37.82
Rs=0.1 3-Norm 87.72 82.05 166.54
Rs=0.2 Infinity Norm (MAX) 88.69 85.45 179.5
Biomedical Dataset

Rs=0.15 Euclidean 39.33 35.03 457.75
Rs=0.15 Manhattan 56.68 47.40 617.1
Rs=0.05 Partial Euclidean (Window) 36.85 35.96 174.84
Rs=0.15 3-Norm 37.27 33.60 445.21
Rs=0.25 Infinity Norm (MAX) 29.53 27.42 364.95
BUPA Dataset

Rs=0.175 Euclidean 29.22 26.22 623.12
Rs=0.2 Manhattan 45.66 36.55 762.61
Rs=0.01 Partial Euclidean (Window) 44.79 36.94 366.15
Rs=0.2 3-Norm 19.57 18.12 522.93
Rs=0.25 Infinity Norm (MAX) 11.64 10.27 428.32

Table 5.11: FOM Final Results for Original Proliferating Implementation

Radius Distance Metric Total FOM | 50% FOM D #
Iris Dataset

Rs=0.1 Euclidean 89.30 86.96 287.34
Rs=0.1 Manhattan 90.86 87.77 110.18
Rs=0.05 Partial Euclidean (Window) 86.06 85.19 41.79
Rs=0.1 3-Norm 87.82 86.60 284.74
Rs=0.1 Infinity Norm (MAX) 85.95 86.06 271.2
Biomedical Dataset

Rs=0.05 Euclidean 59.56 49.32 607.91
Rs=0.05 Manhattan 63.08 48.93 648.01
Rs=0.02 Partial Euclidean (Window) 57.47 50.47 373.86
Rs=0.05 3-Norm 56.65 48.23 593.31
Rs=0.075 Infinity Norm (MAX) 51.26 44.95 537.67
BUPA Dataset

Rs=0.05 Euclidean 62.19 47.33 1264.5
Rs=0.05 Manhattan 62.95 46.04 1249.06
Rs=.0005 Partial Euclidean (Window) 65.82 45.27 514.12
Rs=0.05 3-Norm 59.40 46.15 1442
Rs=0.1 Infinity Norm (MAX) 54.30 45.30 1389.7

Table 5.12: FOM Final Results for Modified Proliferating Implementation

78

79

The neural network model is tested for two cases. The first is the case in which
the algorithm is trained with the same data as the negative selection algorithm, while in
the latter case the network is trained with the modified training data presented in Table
5.1. Table 5.13 shows the results from training with only self data using the Iris dataset,
which illustrates how the neural network will fail for this case. Since the network is only
trained with self data, the desired output for all training data is always the same (e.g. ‘1°).
Therefore, the network is basically trained to only output a ‘1’, and any new unknown
data instance will always be classified as a ‘1’. This is why the detection rate is

constantly zero, because all non-self data is consistently classified as self.

FINAL RESULTS | Detect Rate (%) False Alarm (%) F.O.M.
Datasets Mean Std. Dev. Mean Std. Dev. (Y%oNS+%S)

Setosa 100% 0 0 0 0 0.00
Versicolor 100% 0 0 0 0 0.00
Virginica 100% 0 0 0 0 0.00
Setosa 50% 0 0 0 0 0.00
Versicolor 50% 0 0 0 0 0.00
Virginica 50% 0 0 0 0 0.00

Table 5.13: Neural Network Failure Results

Table 5.14 displays the final results derived from the experimental testing of the
neural network algorithm. The total FOM score represents the average FOM score of all
tests performed for a single dataset. The 50% FOM score is the average of only the tests
performed using the 25% training data, which correspond to training the negative
selection algorithm with only 50% of the self data. The FOM scores utilize the same
nomenclature to aid in the comparison analysis despite differences in the training data

monikers.

80

Dataset Total FOM | 50% FOM
Iris Dataset 94.57 93.61
Biomedical Dataset 46.99 46.35
BUPA Dataset 38.51 36.64
Average Results 60.02 58.87

Table 5.14: Final FOM Results for Neural Network Model

The final experimental results for each algorithm implementation are present, but
two more tables are necessary before a the procession of a formal analysis. A complete
summary of the FOM scores for each implementation are consolidated into two distinct
formats. Table 5.15 presents the total FOM scores for each negative selection and neural
network algorithm determined individually by dataset. The average total FOM score is
calculated for all three datasets, as well as a total average score for each algorithm’s
performance. Table 5.16 maintains the same format, but provides the results for only the
50% FOM scores.

It is now possible to present a formal evaluation of the experimental results. The
overall performance of each algorithm implementation has an assigned score to
determine efficiency. The performance of each distance metric is also associated with a

particular score for each algorithm implementation.

Total FOM SCORES IRIS BIO | BUPA | Avg.
Euclidean 88.24 | 26.56 | 23.49 | 46.10
Manhattan 90.00 | 32.20 | 36.43 | 52.88
Partial Euclidean (Window) 89.04 | 59.01 | 74.16 | 74.07
3-Norm 86.40 26.89 | 23.22 | 45.50
Infinity Norm (MAX) 89.16 2765 | 24.63 | 47.15
Constant Radius AVG results 88.57 34.46 | 36.39 53.14
V-Detector Euclidean 91.28 25.07 | 12.75 | 43.03
V-Detector Manhattan 89.85 24.50 10.27 41.54
V-Detector Window 87.89 53.56 | 48.86 63.44
V-Detector 3-Norm 91.45 25.28 | 13.04 | 43.26
V-Detector MAX 89.83 2219 | 16.31 | 42.78
V-Detector AVG results 90.06 30.12 | 20.25 46.81
Modified V-Detector Euclidean 89.66 48.30 | 63.77 67.24
Modified V-Detector Manhattan 87.30 48.84 | 65.32 67.15
Modified V-Detector Window 88.93 51.12 | 72.05 70.70
Modified V-Detector 3-Norm 89.05 54,20 | 64.48 69.24
Modified V-Detector MAX 87.94 69.08 | 66.68 74.57
Modified V-Detector AVG results 88.58 54,31 | 66.46 69.78
Prolif V-Detector Euclidean 89.34 39.33 | 29.22 52.63
Prolif V-Detector Manhattan 89.83 56.68 | 45.66 64.06
Prolif V-Detector Window 84.90 36.85 | 44.79 55.51
Prolif V-Detector 3-Norm 87.72 37.27 | 19.57 | 48.19
Prolif V-Detector MAX 88.69 2953 | 11.64 | 43.29
Prolif V-Detector AVG results 88.10 39.93 | 30.18 52.73
Modified Prolif V-Detector Euclidean 89.30 59.56 | 62.19 70.35
Modified Prolif V-Detector Manhattan 90.86 63.08 | 62.95 72.30
Modified Prolif V-Detector Window 86.06 57.47 | 65.82 69.78
Modified Prolif V-Detector 3-Norm 87.82 56.65 | 59.40 67.96
Modified Prolif V-Detector MAX 85.95 51.26 | 54.30 | 63.84
Modified Prolif AVG results 88.00 57.60 | 60.93 | 68.84
Neural Network 94,57 46.99 | 38.51 59.89

Table 5.15: Final Total FOM Experimental Results

81

Total FOM SCORES IRIS BIO | BUPA | Avg.
Euclidean 84.11 2793 | 21.86 | 44.63
Manhattan 84.44 30.95 | 32.76 | 49.38
Partial Euclidean (Window) 80.89 53.32 | 50.38 | 61.53
3-Norm 83.76 28.39 | 21.42 | 4452
Infinity Norm (MAX) 81.60 26.64 | 21.96 | 43.40
Constant Radius AVG results 82.96 33.45 | 29.68 | 48.69
V-Detector Euclidean 86.12 28.56 | 11.04 | 41.91
V-Detector Manhattan 84.51 26.29 | 10.00 | 40.27
V-Detector Window 84.69 45.02 | 39.34 | 56.35
V-Detector 3-Norm 86.63 28.64 | 11.46 | 42.24
V-Detector MAX 85.49 22.64 | 14.67 | 40.93
V-Detector AVG results 85.49 30.23 | 17.30 | 44.34
Modified V-Detector Euclidean 87.97 40.51 | 50.75 | 59.74
Modified V-Detector Manhattan 85.63 40.48 | 50.54 | 58.88
Modified V-Detector Window 85.02 50.43 | 49.53 | 61.66
Modified V-Detector 3-Norm 86.74 4942 | 50.91 | 62.36
Modified V-Detector MAX 86.41 51.62 | 50.47 | 62.83
Modified V-Detector AVG results 86.35 46.49 | 50.44 | 61.10
Prolif V-Detector Euclidean 83.69 35.03 | 26.22 | 48.31
Prolif V-Detector Manhattan 83.73 47.40 | 36.55 | 55.89
Prolif V-Detector Window 82.95 35.96 | 36.94 | 51.95
Prolif V-Detector 3-Norm 82.05 33.60 | 18.12 | 44.59
Prolif V-Detector MAX 85.45 27.42 | 10.27 | 41.05
Prolif AVG results 83.57 35.88 | 25.62 | 48.36
Modified Prolif V-Detector Euclidean 86.96 49.32 | 47.33 | 61.20
Modified Prolif V-Detector Manhattan 87.77 48.93 | 46.04 | 60.91
Modified Prolif V-Detector Window 85.19 50.47 | 45.27 | 60.39
Modified Prolif V-Detector 3-Norm 86.60 48.23 | 46.15 | 60.33
Modified Prolif V-Detector MAX 86.06 | 44.95 | 45.30 | 58.77
Modified Prolif AVG results 86.52 48.38 | 46.02 | 60.30
Neural Network 93.61 46.35 | 36.64 | 58.87

Table 5.16: Final 50% FOM Experimental Results

82

83

The experimental data shows that the modified V-detector algorithm is the best
method for self/nonself discrimination. The total and 50% FOM scores from Tables 5.15
and 5.16 support this claim, but careful review of the results show only marginal
improvements over the modified proliferating V-detector algorithm. The anticipated
argument of these results is with more stages of proliferation and more experimental
testing, the proliferating V-detector algorithm could eventually outperform the standard
V-detector implementation. Despite this argument, other factors contribute to the success
of the V-detector algorithm as the preferred method of implementing a negative selection

algorithm.

Directing attention to the results provided in Tables 5.10 and 5.12, the FOM
scores are accompanied with the average number of detectors generated for each
algorithm implementation. This is where the V-detector algorithm improves upon the
proliferating V-detector method. In all cases, the V-detector generates far less detectors
than the proliferation version, and still manages to yield higher FOM scores. The
modified proliferating V-detector algorithm only includes two stages, with the intent to
reduce the number of detectors and maintain optimal results. Despite all experimental
efforts, the efficiency of the V-detector algorithm could not be matched by the two stage

proliferating implementation.

Time complexity of each algorithm is another important attribute for measuring
performance. For the BUPA dataset, the modified V-detector algorithms required 5-10
hours of run time to complete 50 trials, while the modified proliferating V-detector
implementation took between 24-48 hours. The extended run time is a direct result of the

greater number of detectors generated for each implementation. The proliferation stages

84

also contribute to this runtime, as each previous detector is given multiple opportunities
to produce offspring, and then each offspring is given the same opportunity in each
successive proliferation stage. If time constraints are not a concern, the proliferating V-
detector algorithm with multiple stages of proliferation may prove to be the better choice
of implementation. For reference, runtimes are based on using a PC with a 2.4MHz Intel

Celeron processor and 512Mb of RAM running Windows XP.

As expected, the negative selection algorithm using fixed-sized detectors was the
least efficient model of the three distinct negative selection algorithms tested. The FOM
scores and required number of detectors combine to prove this algorithm should not be
considered for real-valued negative selection algorithm implementation. The neural
network model outperforms the simple fixed sized detector method, but fails to match the
efficiency of the V-detector and proliferating implementations. To reiterate, the neural
network model is not a perfect comparison model since modifications to the training data
is required. However, the efforts put forth in this study did provide sufficient comparison

conditions, as evident by the neural network’s overall performance.

A major focus of this study was the determination of an appropriate distance
metric in the application of a specific real-valued negative selection implementation. The
initial hypothesis was that the partial Euclidean distance metric would produce the best
results. The partial Euclidean distance metric proved to be the most efficient
implementation when using the fixed sized detector algorithm, as it greatly exceeded the
other distance metrics in both total and 50% FOM scores. The explanation of these
results is straightforward; each distance metric implementation required the same fixed

number of total detector, but the partial Euclidean distance metric had a smaller non-self

85

space to cover. Since the partial Euclidean distance metric only calculates distance in
two dimensions, the overall self/non-self space is much smaller than in four or six
dimensions. For this reason, it is expected to outperform alternative distance metric for

every implementation.

The difference between the fixed sized detector and V-detector algorithms is that
detector count is determined by estimated coverage. This distinction is the reason why
the partial Euclidean failed to remain the most efficient implementation. Since the radius
is variable and detector count is flexible, each distance metric can adapt to its given
self/non-self space, removing the previously stated advantage held by the partial
Euclidean metric. The partial Euclidean distance metric may not be the most efficient,
but it does produce comparable results while producing far less detectors for both the V-
detector and proliferation algorithms. Despite producing fewer detectors, the partial
Euclidean algorithm maintained the disadvantage of having the longest runtime. This
arose from the fact that each distance calculation required several calculations in a lower
dimensional space. For a single distance calculation, 3-5 distances were calculated for a
single self point to a single detector. Multiplied over many self points and detectors, and
compounded with detector to detector distance calculations, resulted in the partial
Euclidean calculation time complexity to increase dramatically (3-5 times longer) over

the single distance calculation requirement of the other distance metrics.

For the modified V-detector algorithm, the prevailing distance metric with the
highest overall total and 50% FOM scores was the infinite-norm (or MAX) distance
metric. Following closely behind, the 3-norm distance metric had the second highest

50% FOM score, while the partial Euclidean had the second highest total FOM score.

86

The 3-norm is third place in total FOM scores. The conclusion from experimental testing
is that the infinite-norm should be considered as the optimal choice when implementing a
real-valued negative selection V-detector algorithm. The ease of distance calculation
made this the fastest implementation, and combined with the best overall FOM score,

makes this the perfect choice for future V-detector implementations.

The proliferating V-detector algorithm results did not clearly indicate a preferred
distance implementation. The 50% FOM scores designated the standard Euclidean
distance metric as the most efficient, but only minimally over the Manhattan distance
metric. Conversely, the Manhattan distance metric outperformed the Euclidean for the
total FOM results. With the exception of the infinite-norm, all FOM scores were very
close for the proliferating V-detector algorithm. The only formal conclusions which can
be derived from these results is that either the Euclidean or Manhattan distance metric
should be implemented for the proliferation algorithm, and the infinite-norm should be

avoided.

It is interesting to note that while the infinite-norm is the preferred choice for the
V-detector algorithm, it is the least acceptable choice for the proliferating
implementation. For the V-detector algorithm, detector generation is the only mechanism
for non-self space coverage and the infinite-norm distance metric produces adequate non-
self coverage. The proliferating V-detector algorithm’s strength in non-self coverage
derives from its proliferation stages, not detector generation. The infinite-norm fails to
perform adequately when proliferation stages occur. The proliferation of detector
offspring using the infinite-norm is not as productive as other distance implementations.

This may be a result of the offspring generation scheme.

parent

parent

offspring

Manhattan

offspring

Infinite Norm

parent

offspring

Euclidean

Figure 5.12: Offspring Detector Coverage

87

Detectors only generate offspring parallel and anti-parallel to the detector centers.

Recall the shape of the detector in Figure 3.1. The circular and diamond shape (in two

dimensions) of the Euclidean and Manhattan distance seem to have an advantage over the

more square-shaped infinite and 3-norm distance metrics. Recall, the 3-norm is actually

the second worst implementation for the proliferation algorithm. While these shapes

provide benefits in only detector generation stages, they apparently become a hindrance

during proliferation stages. Figure 5.12 illustrates offspring detector coverage for

different distance metrics. The amount of area not already covered by the parent detector

is greatest for the Euclidean and Manhattan offspring detectors.

88

CHAPTER 6

Conclusions

A formal evaluation of implementing different distance metrics for various real-valued
negative selection algorithms is the purpose of this research. This research focuses on
three existing variations of the real-valued negative selection algorithm, and evaluates
each implementation using five different distance metrics. Distance metrics have been
proven to affect the quality of a negative selection algorithm’s performance, yet no
formal study to date has incorporated real world data and various implementations to
determine which distance metric provides maximum effectiveness based on a figure of
merit.

Experimental findings suggest the V-detector algorithm utilizing the infinite-norm
distance metric is the best performing implementation. It not only results in shorter
execution runtimes, but also produces superior FOM results. If runtimes are not a
concern, the proliferating V-detector algorithm using either Euclidean or Manhattan
distance metrics is also a good alternative option. The negative selection algorithm using
fixed-sized detectors should be avoided, and if implemented; the partial Euclidean
distance metric is the definitive choice for optimal performance.

A multilayer feedforward neural network algorithm implementation is a basis of
comparison to alternative computational intelligence models. The major discrepancy

between negative selection algorithms and alternative approaches is the method of

89

training. The negative selection algorithm has the applicable advantage of data
discrimination when only large amounts of ‘self’ (normal) samples are available. Most
alternative learning algorithms require training of both normal and abnormal data to
adequately discriminate between the two.

This study leads to many future research opportunities. More sophisticated
negative selection algorithms are being proposed currently, leading to new prospects in
evaluating distance metric performance. One new method employs both negative and
positive selection mechanisms to improve the correct classification of data by lowering
false alarm rates [20]. The most recent advancement is danger theory, which
incorporates fuzzy rules to further disseminate the classification of self/non-self [1].
Expanding the research to include more datasets is another possibility, extending into
higher dimensional data or more applicable scenarios where most of the data is normal.
A final proposition is testing more distance measures. The concept of partial Euclidean
distance can be expanded to partial Manhattan or partial 3-norm, or the window size can
be extended to include more than two dimensions. This study represents the beginning of

a whole new area of negative selection research.

90

REFERENCES

[1] Aickelin, U., Dasgupta, D., “Artificial Immune Systems Tutorial”, In: Introductory Tutorials
in Optimization, Decision Support and Search Methodology, E. Burke and G. Kendall Ed. New
York: Springer, 2005, pp375-399

[2] Blake, E. K., Merz, C., “UCI Repository of Machine Learning Databases”, Irvine, CA.
University of California, Department of Information and Computer Science, 1998. (Last
accessed Jun 7, 2009)

[3] Das, S., Gui, M., Pahwa, A., “Artificial Immune Systems for Self-Nonself Discrimination:
Application to Anomaly Detection”, Studies in Computational Intelligence (SCI) 116, 2008.
pp229-246

[4] Dasgupta, D., “Advances in Artificial Immune Systems”, IEEE Computational Intelligence
Magazine. November, 2006.

[5] Dasgupta, D., Krishna Kumar, K., Wong, D., Berry, M., “Negative Selection Algorithm for
Aircraft Fault Detection”, 3rd International Conference on Artificial Immune Systems. Catania,
Italy. September, 2004.

[6] De Castro, L., " An Introduction to the Artificial Immune Systems ", presented at
International Conference on Artificial Neural Networks and Genetic Algorithms (ICANNGA),
Prague, CZ, 2001.

[7] De Castro, L., Von Zuben, F., "Artificial Immune Systems: Part [— Basic Theory and
Applications", Tech. Rep. TR-DCA, January, 1999.

[8] De Castro, L., Von Zuben, F., "Artificial Immune Systems: Part I[I — A Survey of
Applications", Tech. Rep. TR-DCA, February, 2000.

[9] Forrest, S., Perelson, A., Allen, L., R., “Self-nonself discrimination in a computer”, In
Proceedings of the 1994 IEEE Symposium on Research in Security and Privacy, IEEE Computer
Society Press, Los Alamitos, CA. 1994. pp 202-212

[10] Gonzalez, F., Dasgupta, D., “Anomaly Detection Using Real-Valued Negative Selection”,
Journal of Genetic Programming and Evolvable Machines. Volume 4, Issue 4. December, 2003.
pp383-403.

[11] Gonzalez, F., Dasgupta, D., Kozma, R., “Combining Negative Selection and Classification
Techniques for Anomaly Detection”, Volume 1, Congress on Evolutionary Computation.
Honolulu, Hawaii. May, 2002. pp705-710.

http://eprints.nottingham.ac.uk/621/

91

[12] Gonzalez, F., Dasgupta, D., Nino, L. F., “A Randomized Real-Valued Negative Selection
Algorithm”, Second International Conference on Artificial Immune Systems. United Kingdom.
September, 2003.

[13] Haykin, S., “Neural Networks and Learning Machines”, 3" ed. New Jersey: Pearson
Education, 2009.

[14] Janeway, C., Travers, P., Walport, M., “Immunobiology”, Fifth Ed. New York and London:
Garland Science, 2001.

[15] i, Z., “Negative Selection Algorithms: from the Thymus to V-detector”, Ph. D. dissertation,
University of Memphis, Memphis, TN, USA, August 2006.

[16] Ji, Z., Dasgupta, D., “Applicability Issues of the Real-Valued Negative Selection
Algorithms”, Genetic and Evolutionary Computation Conference (GECCO). Seattle, Washington.
July, 2006.

[17] 1i, Z., Dasgupta, D., “Revisiting Negative Selection Algorithms”, Issue 15.2. Evolutionary
Computation Journal. July, 2007.

[18] Ji, Z., Dasgupta, D., “Real-Valued Negative Selection Using Variable-Sized Detectors”,
Genetic and Evolutionary Computation Conference (GECCO). Seattle, Washington. June, 2004.

[19] Ji, Z., Dasgupta, D., " V-Detector: A Negative Selection Algorithm", presented at Computer
Science Research Day, University of Memphis, TN, USA, 2005.

[20] Middlemiss, M., “Positive and Negative Selection in a Multilayer Artificial Immune
System”, Discussion Paper 2006/03. Department of Information Science, University of Otago,
Dunedin, New Zealand, 2006.

[21] Sabo, D., “A Modified Iterative Pruning Algorithm for Neural Network Dimension
Analysis”, M.S. thesis, California Polytechnic State University, San Luis Obispo, CA, USA,
2007.

[22] “Statlib datasets archive”, World Wide Web, http://lib.stat.cmu/datasets. (Last accessed May
12, 2009)

[23] Yang, X.R., Shen, J, Wang R., “Artificial Immune Theory Based Network Intrusion
Detection System and the Algorithms Design”, First International Conference on Machine
Learning and Cybernetics, Beijing, China, November 4-5, 2002

APPENDIX A
Additional Data Tables
IRIS DATASET Total Averages 50% Averages
Algorithm Implementation DR (%) | FA (%) | DR(%) | FA (%)

Euclidean 93.07 4.83 93.78 9.67
Manhattan 96.48 6.48 97.39 12.95
Partial Euclidean (Window) 98.07 9.03 98.95 18.07
3-Norm 97.54 8.38 98.36 16.76
Infinity Norm (MAX) 90.94 4.54 92.84 9.08
Constant Radius AVG results 95.22 6.65 96.26 13.31
V-Detector Euclidean 97.18 5.90 97.92 11.80
V-Detector Manhattan 95.80 5.96 96.43 11.91
V-Detector Window 93.86 4.93 94.87 9.85
V-Detector 3-Norm 97.37 5.91 98.45 11.83
V-Detector MAX 95.85 6.02 97.54 12.04
V-Detector AVG results 96.01 5.74 97.04 11.49
Modified V-Detector Euclidean 90.52 3.23 92.08 6.45
Modified V-Detector Manhattan 90.52 3.23 92.08 6.45
Modified V-Detector Window 92.25 4.36 93.41 8.72
Modified V-Detector 3-Norm 92.55 3.50 93.74 7.00
Modified V-Detector MAX 92.14 4.20 94.81 8.40
Modified V-Detector AVG results 91.60 3.70 93.22 7.40
Prolif V-Detector Euclidean 95.92 6.58 96.85 13.16
Prolif V-Detector Manhattan 96.42 6.59 96.91 13.19
Prolif V-Detector Window 88.47 3.57 90.09 7.15
Prolif V-Detector 3-Norm 95.06 5.85 96.72 11.71
Prolif V-Detector MAX 93.00 4.31 94.07 8.63
Prolif AVG results 93.77 5.38 94.93 10.77
Modified Prolif V-Detector Euclidean 93.28 3.98 94.92 7.96
Modified Prolif V-Detector Manhattan 93.96 3.10 93.97 6.20
Modified Prolif V-Detector Window 83.04 1.73 84.37 3.46
Modified Prolif V-Detector 3-Norm 91.56 3.74 94.08 7.48
Modified Prolif V-Detector MAX 88.60 2.65 91.37 5.31
Modified Prolif AVG results 90.09 3.04 91.74 6.08

Table A.1: Iris Averages for Detection & False Alarm Rates

92

BIOMEDICAL DATASET Total Averages 50% Averages
Algorithm Implementation DR (%) | FA (%) | DR(%) | FA (%)

Euclidean 32.30 5.74 39.41 11.48
Manhattan 39.63 7.42 45,80 14.85
Partial Euclidean (Window) 74.54 15.53 84.38 31.06
3-Norm 32.88 6.04 40.38 12.07
Infinity Norm (MAX) 34.51 6.86 40.35 13.71
Constant Radius AVG results 42.77 8.32 50.06 16.63
V-Detector Euclidean 30.06 5.00 38.56 10.00
V-Detector Manhattan 28.96 4,46 35.21 8.92
V-Detector Window 66.71 13.15 71.33 26.31
V-Detector 3-Norm 30.68 5.40 39.43 10.80
V-Detector MAX 28.86 6.70 36.03 13.40
V-Detector AVG results 37.05 6.94 4411 13.89
Modified V-Detector Euclidean 62.97 14.66 69.83 29.32
Modified V-Detector Manhattan 64.22 15.38 71.24 30.76
Modified V-Detector Window 66.76 15.63 81.70 31.27
Modified V-Detector 3-Norm 71.95 17.74 84.91 35.48
Modified V-Detector MAX 91.10 22.01 95.65 44.02
Modified V-Detector AVG results 71.40 17.08 80.67 34.17
Prolif V-Detector Euclidean 50.55 11.22 57.48 22.44
Prolif V-Detector Manhattan 77.00 17.32 82.04 34.64
Prolif V-Detector Window 46.28 9.43 54.82 18.86
Prolif V-Detector 3-Norm 47.17 9.91 53.42 19.81
Prolif V-Detector MAX 37.23 7.71 42.83 15.41
Prolif AVG results 51.65 11.12 58.12 22.23
Modified Prolif V-Detector Euclidean 75.80 16.24 81.80 32.48
Modified Prolif V-Detector Manhattan 82.52 19.44 87.80 38.88
Modified Prolif V-Detector Window 73.46 16.00 82.45 31.98
Modified Prolif V-Detector 3-Norm 72.03 15.39 79.01 30.78
Modified Prolif V-Detector MAX 65.43 14.17 73.28 28.33
Modified Prolif AVG results 73.85 16.25 80.87 32.49

Table A.2: Biomedical Averages for Detection & False Alarm Rates

93

BUPA DATASET Total Averages 50% Averages
Algorithm Implementation DR (%) | FA (%) | DR(%) | FA (%)

Euclidean 31.12 7.63 37.12 15.26
Manhattan 47.07 10.65 54.05 21.29
Partial Euclidean (Window) 98.77 24.61 99.59 49.21
3-Norm 31.13 7.91 37.24 15.83
Infinity Norm (MAX) 33.34 8.72 39.39 17.43
Constant Radius AVG results 48.29 11.90 53.48 23.80
V-Detector Euclidean 17.00 4.24 19.53 8.48
V-Detector Manhattan 13.50 3.22 16.43 6.44
V-Detector Window 64.90 16.04 71.43 32.09
V-Detector 3-Norm 17.55 4.51 20.49 9.03
V-Detector MAX 21.27 4.96 24.61 9.93
V-Detector AVG results 26.84 6.59 30.50 13.19
Modified V-Detector Euclidean 82.46 18.70 88.14 37.39
Modified V-Detector Manhattan 85.20 19.89 90.03 39.77
Modified V-Detector Window 95.23 23.17 95.87 46.35
Modified V-Detector 3-Norm 83.61 19.12 89.15 38.25
Modified V-Detector MAX 88.28 21.60 93.66 43.20
Modified V-Detector AVG results 86.96 20.50 91.37 40.99
Prolif V-Detector Euclidean 37.93 8.71 43.63 17.41
Prolif V-Detector Manhattan 60.67 15.00 66.57 30.02
Prolif V-Detector Window 59.62 14.83 66.60 29.67
Prolif V-Detector 3-Norm 24.23 4.66 27.44 9.32
Prolif V-Detector MAX 14.75 3.11 16.49 6.22
Prolif AVG results 39.44 9.26 44.15 18.53
Modified Prolif V-Detector Euclidean 81.22 19.03 85.39 38.06
Modified Prolif V-Detector Manhattan 82.30 19.36 84.75 38.71
Modified Prolif V-Detector Window 86.06 20.24 85.75 40.48
Modified Prolif V-Detector 3-Norm 78.35 18.95 84.05 37.90
Modified Prolif V-Detector MAX 71.55 17.25 79.80 34.50
Modified Prolif AVG results 79.90 18.97 83.95 37.93

Table A.3: BUPA Averages for Detection & False Alarm Rates

94

95

UOT3BISUSD I030939p MSU I93Je 0I9Z O3 oDbe 19soyy {p=0b®
JI030919p MOU 93BISUSDL ‘poydesl ST obe xew JITY S(((p:T'T)Q)ozTIs)pura=(p:T'T)A
(I030939p MBU 931PISUSH SI0JS(C SoA0W SIOJDDIDP JO Iaqunu) ‘GT 031 39S obe XeRy GI=<obe IT
SUO MOU 93BI2USH IO I030939P SA0W ‘SNTIPPISSOOULISIP WNWTUTW STTYMS (I>UTW p)oTTUM
O0IX9zZ 03 °9be SZTTRIJTUIS {p=ob®
pus
pus
, D, Se saABS ‘189S5 JTSS 3S9IeSU SsauTwI=Llopy (P T1/0)I=(p:T’T)D
SNTeA WNUWIUTW SOABS ‘90URISTP WNWTIUTW O3 POIPTNOTED 90URJISIP UYoes soxredwodsy {AsTp=uTW P
19s JTos Aue 03 ,T, I03D0939p WOIJ SOUPISTP WNWIUTW SUTIWIDIDP OF poasny UTW p=>3STP IT

posn 20URASTP UBSPTIIONH ‘(39S DUTUTI®RIL) 19SS
JT9S yoes 03 ,T, J01D919P WOIJ SOURIASTIP SPUTIS G-y (

93TUTJUT O3 ©DUBISIP WNWIUTW SZTTPTITUIY

(T°0 se pouTtwIslsp onTea Tewrad)) sSNTpeI I03093190%
198 eaeg TN pozTTewiou o3 Tenbs X 195%

19S5 eieQ TN 9ZTTRWIONS
(19s buTtuTeIl SSOPNTOUT) DHUTISS] I0J 39S AP [[NJ SZITPTIITUIY
(T*0) woxJy sxo3D=s2l18p wopuerx (OO Sel1rI=aUSHY

SUOT309239p JTOS T[NISS=00NS JUNOD 03 pasn ‘(O=J[9S S9zZTTRTIITUIS
SOnNTeA POZITRWIOU O3 Tenbs I 1939

195 DPUTUT®RIL 9ZTTRWIONS

(39S JTeS) 39S butuTeal SZTTRTITUIS

/(v ((F:T/0)I-(p:T/T)Q))wns)) =3sTp
gz:1=L 203
{JUuT=UuTW P
000T:T=T I03F
f1°=x
fuxou X=X
pus
L((P:T/T)X)wIoU/ (P:T T)X=(p: T T)WIoU X
0GT:T=T I03
‘eleq TInd=X
‘(7 '000T) PueI=qQ
qumH~vaOH®NHMH®w
‘wriou I=1
pus
L((P:T/T)I)wIou/ (p:1°T) I=(§: T T)wIou [
_GZ:iT=T 203
!JTeH POTUTDLITA=]

‘I9MOTI UYdeD IJOJ 1S931 01 (SWeu IsmMOTI) =] =buryd 01 posu ATUO NOXS
(EOTUTPITA=0GT-TOT TOTODTSIOA=00T-1G ‘BS0195=0G-T) BIeQ [INJ I0J ©INJONIIS BIeds
(s39s ®3RP GZ) B3RP JISS JO JTRY U3ITM HBuTuTeal ATIuUSIIndg

DTIION

90UB]ST(UBSPITONH buTsn wolsAS SunwWwWI TeIOTITIAIY UOTIODSTSS SATIRDSN I0J WUITIODTY I0309380 POZIS-3UBRISUODS

opo)) 901n0S qepIe Jo sojdwes

q xipuaddy

96

SA0W O] UOTJOSITP SUTWISDISPYG SprT'D) I0O-(prT'T)@ums)sae) / (((F:T/T) TD-(P:T/T)Q)wns)=aTp

(deTaisa0 G/ SMOTTR) I030939p 3SOILSDU 03 9SOTD 003 ST ,T, I0109319p IT YO92UDY AAH*mN.VVGﬂEIUVwHﬂLB
pus
pus
, D, 03 385 1030939 3ISDIBDU S8I03S% H(pr1'0)a=(y:1’1) 1D
{3sTp=UTW P
19S I030939p SNOTASId 03 T I030939P WOIJ S0UPISTP WNWIUTIW SUTWIDIDP OF poasny UTW p=>3STP IT
I03091319p ¢
snotasid yoes 03 T I0309318p WOIJ S0UBASTP Sputis G-y (p/((2v ((p:T1/0)a-(p:1/T)Q@))wns))=3sTp
T-1:1=C 03
0I92z 03 °obe SZTITRTIITUIS {p=0be
93TUTJUT O3 9ODOUBJSTP WNWTUTW SZTTPTITUIY {JUuT=UuTW P
SI0310939p snotasid 3sutebe (ST DUTPNTOXS) I03D0939P 3IS93% I<T IT
pus
pus
pus
pus
91039 se [uesy HprT'DI=(p:T'1T)0
SI0JS(C Se Swesy {3STP=UTW P
19s JTos Aue 03 ,T, I030939p WOIJ SDOUPISTP WNWIUTW SUTWIDIDP OF poasny UTW p=>3STP IT

12s JTSS yodesag
03 ,T, 7030938p WOIJ 2DUBISTP 23BTNOTROMS G " (§/ ((Zv " ((P:T/0)I-(§:T“T)Q))wns))=3sTP

gz:1=L 703
93TUTJUT O3 9DUBRJSTP WNWTUTW SZTTRTITUIY {JUT=UTW P
(ITPxU+pP=p) I03D939p 20w ATEPAW H(PITT)A=(P:T'T)A
(GT=2 ‘G0 =u) (3/°9be-)dxey u=u) I030239p 2A0W O JUNOWE SOJRTNDTRIS ! (GgT/®be-)dxo,G00 " =U
Suo0 AQ 9be JUSWSIDUIS !T+obe=0bP
(IT- IO T I9U3To)219S J[SS 3SOILDU WOIJ I03D9239pP%
SA0W 03 UOTJOSITP sautwrolsdy ¢ ((((F:T’/T)o-(p:1'T)@)ums)sqe) /(((F:T'T)D-(p:T/T)q)wns)=11p
SsTo
pus
pus
91032 Sk Suesy AprT'0)I=(p:T1'1T)D
9I0J9C SB 2Wesy {9sTp=uTW pP
19s JT9Ss Aue 03 ,T, JI030939p MHEN WOIJ SOUPASTP WNWIUTW SUTWIDIDP 03 pasng UTW p=>3STP IT

(39s butureIl)3SS JTSS Uyodes 03 ,T, I0310939pP%
MEN WOIJ S90URISTP WNWTUTW MU YSTTORISHS Gyt (p/ 2y (P10 I-(p:T/T)@))wns)) =3sTp
Gg:T=L 0%

97

obejusoiad © se 93BI WIBRTY 9STed s3indinog 00Tx (Zx109II00UT JTSS TRIAOL)=WICTY oSTed
obejusoaad ® se 93®BY UOT3D9319J s3indainpgy 00TxJITSSUON Tea10L=921'Y uoTld238(
AT309110D PSTFTIUSPT SISO F[SSUON [BIOF JO JuNod s3ndinos £((00T:T“T)3ITOS)WNS-Q0T=3[SSUON TR3IOL
102IJ00UT POTITIUSPT STT2O JT2S [R101 I0 1unod sandanos 4 ((0ST:TOT‘T)ITSS)WUNS—-()G=102II00Ul IJTSS TBIOL
(JTSSUON=(Q ‘JT2S=T) SUOTIIROTITSSETO JO Arixe s3andinps !JTes=3JT°s
pus
pus
(FToS) Suo 03 388 FIos ‘s9k JI3 {1=(T’1) 3TSS
SIS E]
(FTSSUON) OJ=2zZ suTewaI JTSS ‘30U JIS 0=(T'T)3ITSS
(T°0) snTpel ueyl SsSST ST 2DURISTP WNWTUTW JT }O9UD% I>UTW P 3T
pus
pus
eaep 3521 Aue 01 SDURISTP WNWTUTW O3 UTW P S198% {9sTp=UuTW pP
oTdwes ej3ep 3s93 Aue 03 ,T, JI030938p WOIJ SDUBRJISTIP WNWIUTW SUIWISISP 03 Pasng UTW p=>3STP IT
oTdwes e3lEP 31S931%
yoes 03 , T, JI030939p uWOIJ SOUBJSTP SPUTI Gyt (p/ gy (P10 a-(p:1/T)X))wns)) =3sTp
000T:T=C 703
S3TUTIUT O3 SDOURJSTIP WNWTUIW SZTTRIITUIY {JUTI=UTW P
UOTIBOTITSSRTO IOJ e3ep [Ind buTrissl urbeds 0GT:TI=T 1037
uoTleISUSD I030939P ANIS pus
pus
oxedwod 031 SI010939p snotasid OU ‘SWPS SUTIPWSI J1030939P ISITAY NprT'T)a=(p:T'T)Qa
SIS
pus
pus
pus
1D, 03 39S 10309390 3S9IBDU S9I03S3Y HprT/0)a=(p:1/1) 10
SNTEeA WNWTIUTW SSABSY {3STp=UuTW p
JI0309219p snortasid 01 ,T, I030939p WOII SOURISTIP WNWTUIW SUTWISIASP 0 pPasng UTW p=>3STP IT

I03092319p snoTasxdy
yoes 03 T, I030939p WOIJ SOUEBISTP SPUTIZ ot (p/ (g ((prT'0)a-(p:1/1T)Q@))wns)) =31sTp
T-T:1=L 707

93TUTJUT O3 9DULJSTIP WNWIUTW SZTTeTITUIY {JUT=UTW P

suo AQ 9be JUSWSIDUIS ! T+obe=0bhe

(ITPxU+P=pP) I03D939p 20w TP W H(PITT)A=(P:T7T)A

(GT=2 “‘Gp0°=u) (3/9be-)dxo,u=U) I010919p SA0W O3 JUNOWE SOIBTNOTRDY ! (g1 /ebe-)dxexG00" " =U

(T- x0 T JI=yU3T=) I030932J IS2ILSU WOIJ I0302939pP%

98

T-3:1=C 103

I93eT posn ‘g=d SzZITPI3TUIY fo=d
SsTo
IS3UNO0D JI030939p 1USWSIDUTS LT4Y=Y
66 xUTWP S® J030939P JO SNIPeI S103S5% £(66°xUTW P)=(T ‘) pI
X=(9:1¥%)a
I0309319p 9103s ‘I030939p 3IST ITS (T==2) IT
SsTo
SNUTIUOD
I030939p MaU 93BILUSHL ‘(I) PTOUSDIY]} J[SS UBYL SSOT 90UBISIP UTW JTS I>UTW p IT
pus
pus
UTWP O3 SDUPISTIP WNWTUTW 9I031S% {3STP=UTW P

uTw p=>3sTp IT
(OTIx32wWw urlIIeYURR)

%
%

I030939p WOIJ JTSS O3 SDURJSTP UTW SS3BTNOTED 9/ ((((9:T'T)%=-(9:T/T) 1) sge)uns)=3sTp

00¢:T1=T 103

©3TUTJUT O3 UTWP SZTTBTITUIS {JUT=UTUW P

S31EPTPUED JI03D939P WOPURI 331eISUsby {(9'17)pueI=x
PoASTYOR ST PTOUSSIY} ISY3ITS TTIUN 1030939p S3eIsusby (000T>3) 33 (000G>W) STTUM
JusweoeTd/3UNOD I030939P SSUTWISISP ‘T=Y SZTTRTITUIY 1=y
(AT3usIan0o 286°66) °2DBISA0D%=D (O-T)/I=Ww o0rdS JTSSUOU JO °2HBISA0D TPI0] SO3PWIISS ‘(=W SZTTERTITUIS fp=uw
SnTpeL JTSS I9S% 16z0 =2
eleg DUTISS], POZTTPWION=J 39S% {wIou J=J
pus

39S ejeq TINd SZTTPWIONS £((9:T/T)A)wIou/ (9:T“T)d=(9: T T)wIou g
Gpe:I=T JI03J
(39s buTuTeI]l SepnToUT) buT3Ise]l I0J 39S eIEP TINIS ‘e3eq TInd=d
SUOT30939p JT9S T[NJSsSe00Ns 3UnOd 03 pasn ‘(Q=J[9S SZT[PIJITUIY {(Gpg ‘1) soaxsz=3TSsS
eleq DUTUTRI], POZTTRWION=] 39S% ‘wrou I=J,
pus

eijeq DUTUTEIL SZTTRUIONS £((9:T7T)I)wIou/ (9:T“T) I=(9: T T)wIoU [
00¢:T=T 4103
(39S FT9S) 39S butuTeal SZTTRIITUIS ‘uesTd=1L
‘0=L

uesaT) Se eled 200 YITM buTuTteal AT3usIiandsg
ueaTd 00z ‘I9pIosTd GFT ‘sS3eS BIRQ GFE :eIed ¥YdNd DUTISOLL
Wo3SAS sunuwl TPIOTITIAY UOTIDSTSS SATIRDSN I0J WUITIODLIY I0309390-A PSTITPONS

99

TeTOTITAIY UOTIOSTSS 2ATIRHSN J0J WYITIOHTY I01093180-A DuTIRISITTOIJS

Junoo x03os3sq sandanpsg

A=Y

obeiusniod 91®vY WIBTY ©STed SO31RTNOTRDS 00T« (00Z/309I7100UT JTSS TBIOL)=WILTY oSTed

obejusoaad 93vy UOT3IDS9319J 93eTNOTRDS
AT309I1I00 POSTITAUSPT STTSO J[OSUON TB3IOJ JO 3unod sindainpg

00T« (SPT/FTOSUON Te3OI) =938y UOT3IDS3=Q
((GPT:T’T)3TOS)UNS-Gy[=JTOSUON TB3IOJ,

1089II00UT PSTITAUSPT STT2D JT[2S TeI0]1 JO Junod sindinos ¢ ((Gye:9yT‘T)ITSS)UWNS-00Z=109II0DUT JTSS TeI0L

(FTOSUON=(Q ‘JTO9S=T) SUOTILOIIFISSLIO JO Aexxe sindinQpsg

(JT®S) suo 03 IT9S 39S ‘ou JIg

(FJTSSUON) (0=FToS 219s ‘s=hk IIg
SNTPRI JI030939Pp UBYY SSOT ST 20UPISTP IJT YO2UDY

UOTJEOTITSSETD JI0J eaep TInd burisel urthagds
oseyd UOT1RISUSH I0302390 PUHS

I23UNO0D 9HRISAOD JUSWSIDUT ‘PoOISA0D ApeSITe ST J01D919p MOU JIg

I931UNO0D 2HBISA0D I03D918P 19SaML

J1UNOD JI0109312p 1USWSIDUTS

66 xUTWP ST SNIPeI I03D939P MU 9I03SS

I03D939p M3U 2J01SS

sI0730939p snoTasxd TTe AQ Po1D91SP 10U J01D9IDP MBU JTL

SI03102312pP w.DO._u\V@,HQ \/.Q P=30239p 30U JI030=239pP MU JT S3UNODY

2Gz JO deTIoA0 SMOTTE ‘I0309318p MOU S31rIS2USDS

‘STITPRI I030939p SNOTASId UPY] SSST S0URJISIP I030939p MOU JTS
(OTI32W uespPTITONH)

SI030939p PaI031S sSnoTaAsId 03 S0URJISTIP UTW S3BTNOTED

o
°
o
°

‘T=(T'T)3ITeS

JyeaI1q
{0=(T‘1)3IT°S

!{3T9s=3JT°os
pus
pus
pus
osTe

((t/C)pa)>astp IT
oTdwes e3ep 3s93 ydes 03 , T, I03D939P WOIF SDUBISTP SPUTIS 9/ ((((9:1/0)a-(9:1“1T) 4) sqe)wuns) =3sTp
T-3:1=C x03%
Gye:1=T I03J

pus
! T+w=w
9S T
fo=w
_ TTH=Y
(66" xUTW P)=(1%)PI
IX=(9:1'¥)a
((1-31)==d) 3IT
pus
pus
{1+d=d
9S T
yea1q

(GL % (T*C)pax)>3sTP IT

9/ ((((9:T'1)x=-(9:170)a) sae)wuns)=1sTP

pus

pus

pus

100

I93UNOD I03D9319P JUSWSIDUTL
(I-UTWp) Se J021D9319pP JO SNIPBI 9I01Sg

I03D939p 2J03S ‘J030939p 2AST ITIS

I01D09219p MAU 23eISUSH ‘4 (I) PIOYSSIYI JTSS UYL SSOT 9OURISIP UTW ITY

UTWP O S0URASTP WNWTUTW SI01SS

(OTI32w uespTITONH)

STHY=Y
)=(T*3) pa
=(p:13M)a

(T==3) 3T
9sTo

SNUT3IUOD
I>UTW p 3IT
pus

pus

{3STP=UTW P
UTWw p=>3sTP JT

J030838p WOIJ JTSS O3 SDUBISTP UTW S83BTNOTROY G " ((Zv” ((P:T’T)X-(p:T‘T)1))uns)=3sTp

©3TUTIUT O3 UTWP SZTTRTITUIS
21ePpIpPURD I010D939p WOopurI o3eIsusby

peASTUDE ST PIOYSSIYl IsYlIs TIIUN I0309319p o3eIsuUsby

0JI9Z 03 SNIpPeI 10309390 SZT[PIJITUIY
0JI9Z 03 onTeA I030939C0 SZT[RIJITUIS
JusweoeTd/3UNOD I030939P SSUTWISISP ‘T=Y SZTTRTITUIY
(AT3usIano 986°66) °2DBISA0D0%=D (O-T)/I=Ww o0vdS JTSSUOU JO 2HBISA0D
(T°0 Se pauTwI=Slsp onTea TewrtidQ) snIped JI9S3%
eleQ burisel POZTTPWION=4 3953

195 e3eQ TINd 9ZTTPWIONG !
(39s buTuTeIl SSpPNTOUT) buUuTlse]l I0J 189S BIRP [TNIY

SUOT3D0939p J TS5 [NJISSoOONS JUNOD 03 pasn ‘O0=J[oS SZTTRTIITUIS
eleg DUTUTRI] POZTTRWION=] 39S

o~

eleq DUTUT®BIL SZTTPWIONS

(3°S 3TSS) 39S butuTeal SZTTRIFTUIL

‘IoMOTI yodes I0JF 3se3 03
(BOTUTBITA=0GT-TOT ‘IOTODTSISA=00T-1G ‘©S0385=0G-T)
(s3ss e3ep 0G)

Te303 So3PWTI3SD

‘0=Ww SZTTRTITUIS

0G:1=T 703
!JUT=UTW P

{(p'T)puea=x

(00Z>3) 33 (000G>w) STTUM

((prT/T)d)wrou/ (p: T T)A=(p: T T)WIOU g

‘1°0=
fuwrou g=
pus

0GT:TI=T JIOJ

‘eeq TInd=d

! (0GT‘T)soxsz=3IT=s
‘wIou =1,

pus

((P:T'T)I)wIou/ (p:T'T)I=(p:T'T)wIou J,

0G:T=T JI0Z
!eso}3ag8=1

(sweu IoMOTI) =L 2buryd 031 po2u ATUO NOXS

eaeq TINg I0J 2IN10NI1S BIRedS
plep JTOS TI® U3TM Dbututeal AT3jusaandg
(sobeplgs 7) we3lsAgS sunuwuIlgy

101

pus
pus
s1030939p snotaaid AQg pPo30939pP 10U I030939p HUTIASIIO IT S3IUNODY ! 1+d=d
SsTo
JyeaI1q
I0309219p MdU 23eIdUDDY
‘SNTPeI I030939p sSnoTasid UPY] SSOT 90UBRJISIP I1030939p DbuTtadsIJo ITY (T‘C)ypa>3sTp IT

(OTIJ2W UPSPTITONH) SI030818PY
po2x103s snortasid 031 PUTIdSIIO WOIJ SOUPRISTP UTIW S3BINOTEROY

[T‘0'070]=Tn ‘x030939pP%

poI03s *ASId JO S9D0USISJWNOITO HUOTE I030939p DHUTIASIIO 93BISUSDHY

obe3g UOT3IRISITTOIJ IST UTbhags

(ebeas 3xou TT3un burtjeasyTroad woxJ HuTaIdsIJO sjusasId) JUNOD UOTIIRISIT

(ATuo sssodand TeUOT3RPWIOJIUT JOJ POSN) ISDJUNOD DBUTIASIIO SZITRTITUIS
oseyd uoT3eIBUSH 0302390 PUHL

ATT)PIXTAH(RTT)

putadsygo =zTTRTI2

I93UNno0D SHPISAOD JUSWSIDOUT ‘pPOISA0D ApeaITe ST I0310939p MOU JIg {T+w=w
I973Unod 2beISA0D I030938P 395G 0=
JUNOD JI030939p JUSWSIDUTY ST =Y
(I-UuTwp) sSe SNIpeI I030938P M3U 2I03S< f((T)-uTW pP)=(T‘Y) P
I030918p MaU 9I03S% IX=(p:T1/¥)a
SI030939p snotasid TTe AJ Po310939p 30U I030939p MOU IJTS ((T-¥) ==
pus
SI030939p snotasid AQ pP230239p 30U I0210939p MBU JT S3UNODY {T+d=d
SsTo
yesI1q

JI030919p MOU 231BILSUSDY
‘snTpead I030939p SnoTasId UBU3 SSOT S0URJISTIP I030939p MU JTg
(OTIX32W ULRSPTITONH) SI030219P%

(T‘0)pa>3sTp IT

peor03s snoTasxd 03 SOURISTP UTW 23BTNOTEOY G " ((Zo° ((P:TT)X-(F:T*L)Q))uns)=3sTp

Io3eT posn ‘g=d SZTITRIITUTY

T-3:1=(

gyt (v ((prT'D)®x=(p:1’0)Q))uns)=3sTp

T-z3:1=C 103

a=x
mO”Q
T-¥:T1=T
TUTS 13
0=
pu=
Pus
pus
9STo
) 3T
pus
I0T

102

pus
pus
UTWP 03 S0URISTP WNWTIUTW 2I033% {asTp=UuTW pP
uTWw p=>3STP IT
(OTx32Ww ueSpPITONH)
JT9S 03 I030939p HbuTaIdsIJO WOII SOURJISIP UTW SS831RTNOTED

%
%

Gyt (v (P T D)X= (P:T/T) 1))uns) =3sTP

0G:T=T 103
{JUT=UTW P
SI030939p snotasad TTe AQ po30939p 30U JI0309319p HbUTIdSIIO ITS ((T-2)==d) IT
pus
pus
s1030939p snotasid Ag po30939p 10U I030939p HUTIASIIO IT SIUNODY {T+d=d
9sT®
yesaq
JI030919p MOU 293BIDUSDL ‘SNIpeI I030939pP%
snoTaaad uURY] SSST 20URISTP J030939p buTtadsIjo ITS (1/0)pa>3sTp IT
(OTIJ2W URSPTITONH) SI030918PY
po103s snotasxd 03 HBUTIASIFO WOIJF ©O0URISIP UTW S3BTNOTEIL G (2o ((PT'T)®%-(p:T/L)Q))wuns)=3STpP
T-z¥:1=(1037
[T-‘0‘0°0]=20%
‘I030939p PoI031s *A2Id JO S0USISJWNDOITO DUOTER I030939p DLUTIASIIO 23BIDUSHS HT'T)PIxZN+(P:TT)a=x
fo=d
T-3:T=T J03
pus
pus
I23Unod DPUTIdSIIO JULSWSIDUTY !T+330=330
JUNOD I030939pD JUSWSIDUTY IT+29=2Y
(IxG*-UTWP) SEB SNIPPI I0309319p HLUTIASIIO 2I03S% L ((x4G)-UuTW pP)=(T ‘) px
JI030939p bUuTaIdSIIO SI03SY Ix=(p:T2d) A
pus
pus
UTWpP O3 ©0UBJISTIP WNWTUTW 9I03SS {asTp=uTW pP

uTw p=>3sTp IT
(OTI32w uespTITONY)
JT9S 03 I0310939p buTadsIJO WOIT SOUBISTP UTW SS3RTNOTRO

% Gyt (v (BT D)X= (P:T/T) 1))uns) =3STP
06:T=T I03F
{JUuT=UTW P

s1030938p snotasid TTe AQg po3delsp 3ou I030939p HbutadsIFo JTg ((T-2)==d) 3T

103

uTw p=>3sTp IT

(OTI32W UeSPTITONd) %
JTos 03 1030939p DbUuTIdSIJO WOIJ 2DUBISTP UTW S9IBTNOTEOY G, ((Zv ((F:T'T)X-(F:T/T)1))wns)=3STP
0G:T=T 403
JUT=UTW p
(d z93unoo Ag pauTWISlLP) SI030939p snotasid TTe AQ pPe3d939p 30U I030939p HbutadsIo FTe ((T-¢£3)==d) IT
pus
pus
SI030939p snotasad AQ pPoS309239p 30U JI030939p HLUTIdSIIO JT S3IUNODY {T+d=d
9sTo
yeai1q
I030939p MUY
S31BISUSD ‘sSnIpeI I030939p SNOTASId UPYZ SSST S0URISTP J1030939p buTadsIIo ITS (T‘C)ypa>3sTp JT
(OTIX32W UrRSPITONH) SI0302139P%
pox103s snotasxd 03 HBUTIASIFO WOIJF SO0ULISIP UTW S3BTNOTEROY Gyt (2o ((PT'T)®%=(p:T“L)Q))wuns)=3STpP

T-e3:1=0C 103
[T‘0‘0‘0]1=10%

‘I030939p PoI03s *ASId JO SOUSISJWUNDITO DUOTP I030939P DLUTIASIIO 93BISDUSHSG I(T/'T)PILIN+(F:T/T)a=x
fo=d
obelg UOT3LRIDITTOIJ pugz utboagds T-23:3=T I03JF
(ebels 3xou TT3un burtjeisITToxd woxF HbuTadsIJO sjusasad) JUNOD UOTIRISIT DUTIASIJO SZTTRIITUILY 17=¢Y
(9sodand TeUOT3BWIOJIUT) IS3UNOD DHUTIdsIJO puz SZTTRIITUIS ‘0=z33J0

obe3s uoOT3BISITTOIL 3IST PUudS

([0‘0°0’T-1=8n
‘“[o‘0‘0’t]l=Ln “[0’0’T-"0]=9n “[0‘0°’T‘0]=Sn ‘[0’T-‘0’0]=pn I0F yons se sjzeadex wy3lTIOobTV)

[(0‘T‘0‘0]=€n%

‘I030939p PoI031s ‘A2Id JO S0USISJWNDOITO DUOTER I0309239p DLUTIASIIO 23BIDUSHS H(T'T)PIxEN+(P:TT)a=x
{o=d
T-3:1=T 203
pus
pus
(sosodaind TeuOT3RWIOIUT I0J ATUO) I23UNOD DHUTIASIIO JUSWSIDUTY !{T+330=330
JUNOD JI030939P JUSWSIDUTY IT+2=2Y
(IxG*-UTWP) SP SNIPeI I030939p HUTIASIIO ©9I03Sg L ((TxGt)-UuTw pP)=(T‘Zy) P
I030919p buTadsIIO 210315y Ix=(p:T'24) A

104

eleg STIT JIOJ TOPOW YIOMIDN TRINSNY

Junoo x0219918q sandanpg fey=¢y
0GT:TG‘T)ITOS)WNS-QQT=3TOSUON TB3IOL

AT30921100) PSTITIUSPT SIS0 JT[OSUON Te3IO01 JO 3Junod sindinog 2((
:1/1)IT9S)WNS-0G=1091I00UI J TS TBIOL

109JJ0D0UI POIJITAUSPT STT2O JITSS Te102 IO unod sandinog ((0¢s
) (FTOSUON=() ‘JITSS=T) SUOTILOTITSSETO JO Aevaxe sindinQg !JT9s=3JT°os
pus
pus
pus
(FJT®S) Suo 03 JTSS 189S ‘Oou JI {T=(T'T) 3T°S
9sT®
yeaaq
(FTeSuoN) (=3T1os 18s ‘sak JIg ‘0=(T'1T) 3T8S
SNTpeI I0309319p UBYI SSSOT ST S0UBISTIP JT XO9UDS ((10)px)>3sTP IT
orduwes ejep 3s93 yoes 03 , T, 1030938p UWOIJ SOUBISTP SPUTIS G-y ((Zv ((P:T'0)a-(p:17T)d))uns)=3sTp
- T-e3:1=C 103
UOT3eDTITSSETD JI0F elep [Ing burisel utbeds 0GT:T=T I0J

obe31S UOT3IRISITTOId PUZ PUHAS
(80 “/4n “9n ‘sn “‘pn ‘€n ‘zn ‘n Fo uor3ieTIRPA Yor® I0F uTEbe sjeadey)

[T-‘0‘0°0]1=2n%

71030939p pPoI1031s -"A9Id JO 90USISJWNOITO DuoTe I030939p butadsIJo o3eILDUSDy (T’/I)PIxZnN+(P:T/T)a=x
{o=d
T-C3:3=T 03
pus
pus
(sesodand TeUOT3PWIOIUT I0F ATUO) I93UNOD HUTIASIIO PUZ AUSWSIDUTY !T+z3F0=z33J0
JUNOD I030919pP JUSWSIDUTY {T4+EY=€Y
((I4T°)-UTWP) SEB SNIPeI I030939p butadsIiJo 2103sg ((IxT)-UTW P)=(T‘cy)pa
I0730939p butadsyyo 2103S5% IX=(p:T’eY)a
pus
pus

UTWpP O3 =2DUR]ZSTP WNUWTUTW =2I03S% uu.m._..UHC..nE|U

105

‘uot3ebodoad oeg utbsgs

andino Tenjoe-3ndino paITsaps

= JOJIJID 23eTNOTeDY
uoT3ouny OT3STDHOTY

burtsn A ‘3nd3ano TeutTI S31eINTRDS
IybTem seTqy

SPNTOUT 03 A JO SNTBA TBUTJ 93BTNOTEDY

(CRx (L) zm)uns=xag
uoansu yoes JO 3Indino woiI YA 93eTndTeDS

(uoxnsu Jo 3ndano) [A=uoT3ounyy
DT3STHOT JO 2Ind3no s3eINOTRDS

uoJInau Uyoes I0IJL
TAM«SeTa+ (TAx (T/0) Tm)uns=CA o3eTNOTEDY

I woxJ eiep 3Indur=Ttk ubIsSsvy

COA-T) & (T/T) 2x=3p

A (T'G) I=(T

‘1)

f((aye-)dxo+T) /T=%4

! (zamxq) +dwe] A=A

pus
LT T) CAx (=T /1) Zm) uns=duel 34
GT:T=3 I03
pus
fO((E'T)axe-)dxe+T) /T=(T/0) LA
T D) Tamx A+ (TP T) T (P T/0) TM)ums) = (L/T) o
HT'p:T)I=TA
GT:1=C 103
GL:T=T I0%
I osodsurirg {I=1

I JO Suunioo 2bueiie ATWOPUERYS

I osodsueirg

(7 (gL)wxsdpue) =],

m_,H_”,H_

0T:T=TBTI1 I03

(p231se3 sOTI32w snotaep) eTa=3Ta) burtddoisy
(s3jutod e3jed T1IV)

I=p3s ‘uesw oI=2z Y3iTM ,J, SBTIq 03 s3iybtem
I=p3s ‘uesaw oI9z Y3iIM ,J, SBTg 03 s3iybrem
T=p31s ‘uesw 0JI2Z YITM S3ybTom
I=p31s ‘uesw 0JI2Z YITMm S3ybTom
Z°0 O3 93ex DbUTUIEST SZT[RIJITUIY

T 03 uoT3douUNJg

eleq STIAI TInd=q UDISSY%
pleQ DbUTUTERIL=] UDTSSVS
TeT3TuT ubtsse ATwopuedy
TeT3TuT ubtsse ATwopurdy
TeT3TuT ubTtsse ATwopurdy
TeT3TuT ubTtsse ATwopurdy

DT3STHOT JO JUBISUOD SZTTBIITUIS

SUO 03 SBTIQ UDLISSYy

00T ©3 HUSW SZTTBTITUIS
(p=23nd3no paITsSep) IIS2MOTI I=2Ylo S®e
(T=3nd3ano pPaITSepP) IOTODTSISDA
SuoINaU USPPTY

(TO"<HSW) ST TUM
fejeq TINd STII=d
!TJOTODTSISA=T
(T/7) upueI=zam
H\mﬂvcvcmgnﬂgz
A
A

GT'T)upueI=ZM
7 ‘GT) upueI=TM
!z =uaesT
{1=e

‘1=9

{00T=4SKH
PSUTISP JTSSUONS
Se PIUTISpP JTSS%
GT JO I2AkeT 2uU0%

(

106

pus
(CAy (L) zm)wns=3xag
uoInau yoes JO 3Nd3inNo WOIJ A S3BTNOTEIS ST T) LR (T /T) zm) uns=dwa] A
GT:T= JI03I
pus
(uoansu Jo 3ndano) [A=uoT3zounilg
O0T3sTPOT JO 3Indino S3eINOTRIS L((L/T)age-)dxe+T) /T=(T/0) LK
uoInau yoes IO0JY
TaMySBTO+ (TAy (T /L) Tm)ums=CLa S3eTNDOTEDS AT Tamya+ (((T/7: T TAx (P T/0) Tm)uns) =(L/T) &
I woxJ ejep Indur=TAk ubTssvyg HT'p1) =T
Gr:1=C I03
GL:T=T JI03J
I osodsurilg L 1=l
I JO SUWNToO 2buriie ATWOPURYS (7 (gL)waadpuera) I=1
I o@sodsurirg {I=1
pus
pus
Zam 03 s3ybTem MU UDISSYY {MBU zgm=zgm
TaM 03 S3ybTom MOU UDTSSYY IMBU TgM=TgM
M 021 s3ybTom maU UDTSSYS IMBU TM=TM
ZM 01 s3ybTom maU UDTSSYS IMBU zM=ZM
pus
suoanau usSppIy Jo 3ybTem setrq 23epdns (qx (C/7) fpxugeaT) + (T /0) TamM=(T ‘L) mau Tam
pus
(t/0) Tm suoansu usppIyY
03 3ndut woxF siybrem o3epdng LO(T) TA (C/1) CpxuzesT) + (L) Tm= (3 ‘L) mau Tm
p:T=¥ I03
GT:T=[0%
pus

(C eaTop) uoaInau USPPTIY Uodee I0IS

QusTpeIb TEOOT S1BTNOTRIS

uoansu ndjino Jo 3ybTem seTq =3epdns

L((2amedP) + (((C:T/T) gmydplums)) ¢ ((T/0) CA-T) » (T/C) CAye=(L'T) [P
GT:1=C

! (Ax{PxUIRST) +ZAM=M3U ZqM

(L) gm uoanau usppryS

03 uoansau 3ndino woxj saybrem o3epdns

L((T) CAxP«UTRST) + (1) ZM= (3 ‘T) MU ZM
GT:T=Y

(3 e31Tsp) 3IusTpeIb TEOOT S3eTINOTeDS

I037
pus

103

107

SIV AQ peuTysp Se 93y WIBTY SSTed 93eTnoTeds

Zx (((00T:TG‘T)ITOS)WNS-(QG) =wILTY osTed

SIV AQ pautiop se 93ey UOT1ID93S9Q 93BINDTERDS ((0GT:TOT‘T)FTes)uns-((0G:T“T)ITeS)UNs-0QT=23BY UOTIOS3=Q
pus
pus
JT2SUOU S® PSTJITSSETO ST eleg ‘9STMISU10S 0=(T’1T) IT°Ss
9sTa
FTes se pPSTJITISSEeTO ST Bledy {T=(T'1)3TeS
Z/T ueyl Iejeaxb sT 3Indino JIIg G <A IT
YA 3Ind3ino TeUuTI S3eTNOTRDS L ((faye-)dxe+T) /T=HA
Jybtem serq Spniout 03 A 93epdng ! (zamyq) +dwel a=3a
pus
9I0J9Q Sse A 93eTNdTEDS LO(T:T) LAy (2T /T) zm) uns=dwsl o
GT:T= I03I
pus
10329 se [A s3eTnoreds fO((E'T)axe-)dxe+T) /T=(T/0) [A
9I039q se [A @3eTnoreds HTD) Tamx O+ (T2 T) TAx (P2 T/0) ITM)ums) = (L) A
I e3ep 3ndutr o3 TA ubTSSVYSL I(T'p:T) A=TA
GT:T=[0%
ejeq TTngd buraisel urbsdy 0GT:T1=T IO3F
(poasTyoe BTI23TIO butddols =ouo) oseyd DUTUIRIL PUHS pus
pus
(s19s e3ep JO I=qUNU=N) %
N/ (Z/2v (N)¥2)wns = 10IIo porenbs uesw s3eTNdTeDY 6L/ ((2/(2y" (M:T/T)¥°)) umns) =4S
GL:*T= I03J
pus

indino Ten3oe-3ndino paIIssp = I0II9 93BTNOTRDY
uoT30oUuny OT3STHOT butrsn A ‘3Indino TeUTF 23 [NOTEDY
JybTeom SeTIQ SPNIOUT 03 A JO SNTRA TRUTI 93BTNOTRDS

SHA-(T'Q)I=(TT) %
f((qaxe-)dxe+T) /T=4A
{(zamyq) +due]” ya=ya

