

STUDIES ON REAL-VALUED NEGATIVE SELECTION

ALGORITHMS FOR SELF-NONSELF

DISCRIMINATION

A Thesis

Presented to the Faculty of

California Polytechnic State University, San Luis Obispo

In Partial Fulfillment

of the Requirements for the Degree

Master of Science in Electrical Engineering

by

Shane Edward Dixon

February, 2010

ii

© 2009

Shane Edward Dixon

ALL RIGHTS RESERVED

iii

COMMITTEE MEMBERSHIP

TITLE: Studies on Real-Valued Negative Selection Algorithms

for Self-Nonself Discrimination

AUTHOR: Shane Edward Dixon

DATE SUBMITTED: February 2010

COMMITTEE CHAIR: Xiao-Hua (Helen) Yu, Associate Professor

COMMITTEE MEMBER: Arthur MacCarley, Department Chair

COMMITTEE MEMBER: Bryan Mealy, Assistant Professor

iv

ABSTRACT

Studies on Real-Valued Negative Selection Algorithms for Self-Nonself

Discrimination

Shane Edward Dixon

 The artificial immune system (AIS) is an emerging research field of

computational intelligence that is inspired by the principle of biological immune systems.

With the adaptive learning ability and a self-organization and robustness nature, the

immunology based AIS algorithms have successfully been applied to solve many

engineering problems in recent years, such as computer network security analysis, fault

detection, and data mining.

 The real-valued negative selection algorithm (RNSA) is a computational model of

the self/non-self discrimination process performed by the T-cells in natural immune

systems. In this research, three different real-valued negative selection algorithms (i.e.,

the detectors with fixed radius, the V-detector with variable radius, and the proliferating

detectors) are studied and their applications in data classification and bioinformatics are

investigated. A comprehensive study on various parameters that are related with the

performance of RNSA, such as the dimensionality of input vectors, the estimation of

detector coverage, and most importantly the selection of an appropriate distance metric, is

conducted and the figure of merit (FOM) of each algorithm is evaluated using real-world

v

datasets. As a comparison, a model based on artificial neural network is also included to

further demonstrate the effectiveness and advantages of RNSA for specific applications.

vi

ACKNOWLEDGMENTS

The completion of this thesis represents the greatest accomplishment of my educational

career at Cal Poly. I owe my thanks to many individuals that contributed to my success

in this substantial undertaking.

First and foremost, I would like to thank my thesis advisor, Dr. Helen Yu, for her

recommendation of this topic. The research into a new branch of computational

intelligence was a difficult endeavor; however, I was able to persevere with the

continuous support and guidance provided by Dr. Yu.

I must take this opportunity to also thank Dr. Art MacCarley. Since working with

him over a previous summer, he has become an inspirational role model and a valued

friend. His unwavering trust and faith in my capabilities instilled a much needed sense of

confidence.

Most importantly, I would like to thank my immediate family. I could not have

accomplished this task without the love, sacrifice and encouragement from my wife, Kari

Sweet. I would like to acknowledge my sister, Sheena Dixon, who looks upon me as a

role model in her own schooling, and reminds me to set the example for self-

perseverance. Finally, I would like to dedicate this study to my mother, Cheryl, whose

lifelong selfless acts of love and positive influence have made me into the person I am

today.

vii

TABLE OF CONTENTS

Page

LIST OF TABLES ...vii

LIST OF FIGURES ... viii

CHAPTER 1: INTRODUCTION ... 1

CHAPTER 2: BACKGROUND .. 4

 2.1 Biological Immune System .. 4

 2.2 Artificial Immune Systems ... 8

 2.3 Negative Selection ... 12

CHAPTER 3: REAL-VALUED NEGATIVE SELECTION ALGORITHMS 20

 3.1 Real-Valued Distance Metrics .. 20

 3.2 Negative Selection Algorithm with a Fixed Radius... 26

 3.3 Negative Selection Algorithm with Variable Sized Detectors 32

 3.4 Negative Selection Algorithm with Proliferating Variable Sized Detectors 38

CHAPTER 4: NEURAL NETWORKS .. 43

 4.1 Background .. 43

 4.2 Artificial Neural Network Model.. 45

 4.3 Learning Process of an Artificial Neural Network .. 49

CHAPTER 5: TESTING AND RESULTS ... 55

 5.1 Datasets ... 55

 5.2 Testing Methodology and Algorithm Optimization .. 60

 5.3 Experimental Testing and Results .. 71

CHAPTER 6: CONCLUSIONS .. 88

REFERENCES .. 90

APPENDIX A: ADDITIONAL DATA TABLES ... 92

APPENDIX B: SAMPLES OF MATLAB SOURCE ... 95

viii

LIST OF TABLES

Table 5.1: Training Data Distribution for Neural Network Implementation 70

Table 5.2: Final Results for Constant Radius using Manhattan Distance Metric 72

Table 5.3: Final Results for Constant Radius using Euclidean Distance Metric 72

Table 5.4: Final Results for Constant Radius using 3-Norm Distance Metric 73

Table 5.5: Final Results for Constant Radius using ∞-Norm Distance Metric 73

Table 5.6: Final Results for Constant Radius using Partial Euclidean Distance Metric ... 73

Table 5.7: FOM Final Results for Fixed Sized Radius .. 74

Table 5.8: Final Results for Modified V-Detector using Euclidean Distance Metric 75

Table 5.9: FOM Final Results for Original V-Detector Implementation 76

Table 5.10: FOM Final Results for Modified V-Detector Implementation 76

Table 5.11: FOM Final Results for Original Proliferating Implementation 78

Table 5.12: FOM Final Results for Modified Proliferating Implementation.................... 78

Table 5.13: Neural Network Failure Results .. 79

Table 5.14: Final FOM Results for Neural Network Model .. 80

Table 5.15: Final Total FOM Experimental Results ... 81

Table 5.16: Final 50% FOM Experimental Results .. 82

Table A.1: Iris Averages for Detection & False Alarm Rates ... 92

Table A.2: Biomedical Averages for Detection & False Alarm Rates 93

Table A.3: BUPA Averages for Detection & False Alarm Rates 94

ix

LIST OF FIGURES

Figure 2.1: The Biological Immune System Structure ... 7

Figure 2.2: AIS as a branch of Computational Intelligence... 9

Figure 2.3: The Clonal Selection Principle ... 11

Figure 2.4: The Negative Selection Principle ... 12

Figure 2.5: The Basic Concept of the Negative Selection Algorithm 14

Figure 3.1: Various Geometric Shapes Associated with Different Distance Metrics 24

Figure 3.2: Synthetic Data Shapes of Self Regions ... 25

Figure 3.3: Iterative Process of the Detector Generation for Constant Sized Detectors ... 26

Figure 3.4: Moving a Detector .. 28

Figure 3.5: Real-Valued Negative Selection Algorithm Pseudo-code 31

Figure 3.6: Comparison of Detector Coverage for Different Detector Schemes 32

Figure 3.7: Calculating the Conservative Variable Detector Radius 35

Figure 3.8: Comparison of Detector Coverage Around a Self Sample 35

Figure 3.9: Real-Valued Negative Selection V-Detector Algorithm Pseudo-code 37

Figure 3.10: Proliferation of a Detector .. 39

Figure 3.11: Examples of each Stage of Detector Proliferation...................................... 40

Figure 3.12: Negative Selection Proliferating V-Detector Algorithm Pseudo-code 42

Figure 4.1: Basic Structure of a Multilayer Perceptron ... 46

Figure 4.2: Architecture of an Artificial Neural Network ... 47

Figure 4.3: Plots of Different Activation Functions .. 48

Figure 4.4: Multilayer Feedforward Neural Network Algorithm Pseudo-code 54

Figure 5.1: Distribution of 1st and 2nd Dimensions of Iris Dataset................................. 56

Figure 5.2: Distribution of 3rd and 4th Dimensions of Iris Dataset 56

Figure 5.3: Distribution of 1st and 2nd Dimensions of Biomedical Dataset 58

Figure 5.4: Distribution of 3rd and 4th Dimensions of Biomedical Dataset 58

x

Figure 5.5: Distribution of 1st and 2nd Dimensions of BUPA Dataset 59

Figure 5.6: Distribution of 3rd and 4th Dimensions of BUPA Dataset 59

Figure 5.7: Distribution of 5th and 6th Dimensions of BUPA Dataset 60

Figure 5.8: Iris Data Radius Optimization Plot for Various Distance Metrics 64

Figure 5.9: Biomedical Data Radius Optimization Plot for Various Distance Metrics 64

Figure 5.10: BUPA Data Radius Optimization Plot for Various Distance Metrics 65

Figure 5.11: Detector Count Optimization Plot for Euclidean Distance Metric 65

Figure 5.12: Offspring Detector Coverage ... 87

CHAPTER 1

Introduction

Many biological systems provide inspiration for developing new ideas in problem solving

strategies and computing paradigms. Similar to neural networks and genetic algorithms,

the mechanisms of learning, prediction, memory and adaptation in the immune system

are important biological metaphors in the research of bio-inspired computation methods.

Although relatively young, Artificial Immune System (AIS) models are emerging as an

active and attractive field involving models and applications of great diversity. There are

many immunologically inspired algorithms being explored in the field of computational

intelligence; the most dominant of these are the immune network model, clonal selection,

and negative selection algorithm. Each model can perform a variety of tasks, including

pattern recognition, data classification, fault detection, network and computer security,

data mining and numerous others.

 An important aspect of the biological immune system is its ability to recognize

and categorize all of the cells or molecules in the body as either self or non-self cells.

Through an evolutionary learning process, the immune system is able to distinguish

between foreign antigens (bacteria, viruses, etc.) and the body’s own cells or molecules,

which became the inspiration for the artificial negative selection algorithm. The artificial

negative selection algorithm is a computational imitation of the self/non-self

1

immunological discrimination process. Since its conception, negative selection

algorithms have attracted the attention of many computational intelligence researchers.

This thesis addresses the task of data classification, specifically using the

self/non-self discrimination methods implemented in a real-valued negative selection

algorithm. Since gaining popularity, the negative selection algorithm has already

undergone several variations from its original implementation. Three specific variations

of the real-valued negative selection algorithm are tested using three different real world

datasets to determine the efficiency of each implementation. The central mechanism to a

negative selection algorithm is the selection of an appropriate matching rule, or distance

measure in the case of real-valued data. Therefore, five different distance metrics are

tested for each variation of the negative selection algorithm to compare the advantages

and disadvantages of each implementation. An artificial feedforward neural network

model is tested as a comparison model to established adaptive learning algorithms.

Finally, a figure of merit is proposed to measure each algorithm’s overall effectiveness in

performing correct data classification.

This study is separated into six distinct chapters. Chapter 2 introduces some

background concepts on the biological immune system and how it inspired and relates to

the AIS model. Various AIS models are reviewed, followed by an in-depth discussion

about the negative selection algorithm. Chapter 3 begins with a complete description of

each real-valued distance metric tested in this study. It also details the three unique

variations of the real-valued negative selection algorithms implemented, including

pseudo-code to aid in the understanding of each version. Chapter 4 includes a brief

background on neural networks followed by a discussion on the architecture and

2

calculations performed by the artificial feedforward neural network algorithm

implemented in this study. The last section of this chapter details the back-propagation

algorithm used to train the neural network. Chapter 5 covers the datasets, testing

methodology, and final results from this research. Finally, Chapter 6 presents the

conclusion of the findings and potential for future studies. Appendix A provides

additional data table not included in the body of this report and Appendix B includes

samples of the actual MatLab source code written for each algorithm version.

3

CHAPTER 2

Background

2.1 Biological Immune System

The biological immune system is a complex adaptive system of cells, molecules, and

organs that give an organism the ability to recognize foreign substances and neutralize or

degrade them, with or without injury to the organism's own tissue. To accomplish this

task, the immune system has evolved sophisticated pattern recognition and response

mechanisms using its network of chemical messengers for communication. They

recognize an almost limitless variety of infectious foreign cells and substances known as

nonself elements and are distinguished from those native noninfectious cells, known as

self molecules.

 There are two major branches of the biological immune system. The innate

immune system is present before birth and consists of the cells and mechanisms that

defend the host from infection by other organisms, in a non-specific manner. One

important component of the innate immune system is a class of blood proteins known as

complement; this class has the ability to identify bacteria, activate cells and to promote

clearance of dead cells or antibody complexes. Several other functions of the innate

immune system include the recruiting of immune cells to sites of infection through the

production of chemical factors, and the identification and removal of foreign substances

present in organs, tissues, the blood and lymph, by specialized white blood cells.

4

The immune cells responsible for engulfing and destroying harmful pathogens

and particles are known as phagocytes. Phagocytic cells, including macrophages,

neutrophils and dendritic cells, function within the immune system by identifying and

eliminating pathogens that might cause infection. Phagocytes generally patrol the body

searching for pathogens, but are also able to react to a group of highly specialized

molecular signals produced by other cells [14]. Phagocytes also play a role in regular

tissue development and maintenance, and are an important part of the healing process

following tissue injury.

The other important immune cells in the innate immune system are the white

blood cells known as leukocytes. Leukocytes are different from other cells of the body in

that they are not tightly associated with a particular organ or tissue; thus, they function

similar to independent, single-celled organisms. Leukocytes are able to move freely and

interact with and capture cellular debris and foreign particles, or invading

microorganisms. Unlike many other cells in the body, most innate immune leukocytes

cannot divide or reproduce on their own, but are the products of pluripotent

hematopoietic stem cells present in the bone marrow [14].

The most important aspect of the innate immune system is the fact that it induces

the expression of co-stimulatory signals in antigen presenting cells (APCs) that will lead

to T-cell activation promoting the start of the adaptive immune response [7]. To clarify,

the adaptive or "specific" immune system is activated by the “non-specific” and

evolutionarily older innate immune system. The adaptive immune system is the main

focus of interest here as learning, adaptability, and memory are important characteristics

of adaptive immunity. The adaptive immune system is composed of highly specialized,

5

systemic cells and processes that eliminate or prevent pathogenic challenges. The

adaptive immune response provides the vertebrate immune system with the ability to

recognize and remember specific pathogens to generate immunity, and to mount stronger

attacks each time the pathogen is encountered.

The adaptive immune system is highly adaptable because of somatic

hypermutation (a process of accelerated somatic mutations), and V(D)J recombination

(an irreversible genetic recombination of antigen receptor gene segments). This

mechanism allows a small number of genes to generate a vast number of different antigen

receptors which are then uniquely expressed on each individual lymphocyte. The

adaptive immune system uses clonally distributed, somatically generated antigen

receptors on two types of lymphocytes, memory B-cells and memory T-cells [7]. B-cells

and T-cells are derived from the same pluripotential hematopoietic stem cells, and are

indistinguishable from one another until after they are activated. B-cells play a large role

in the humoral immune response; T-cells are intimately involved in cell-mediated

immune responses [14].

The humoral branch of the immune system involves the interaction of B-cells

with antigens and their subsequent proliferation and differentiation into antibody-

secreting plasma cells. Upon activation, B-cells produce antibodies, each of which

recognizes a unique antigen, and neutralize specific pathogens. An antigen is a substance

that prompts the generation of antibodies and can cause an immune response [14]. "Self"

antigens are usually tolerated by the immune system; "Non-self" antigens are identified

as intruders and attacked by the immune system. Antibodies function as the effectors of

the humoral response by binding to antigens and facilitating their elimination. When an

6

antigen is coated with an antibody, it can be eliminated in several ways, such as ingestion

by phagocytes or activation of the complement system [1]. The main point is that long-

lived antigen specific memory B-cells will remain after this process occurs; these cells

can be called upon to respond quickly if the same pathogen re-infects the host.

Effector T-cells generated in response to antigens are responsible for cell-

mediated immunity. Cytotoxic T-cells are a sub-group of T-cells which induce the death

of cells that are infected with viruses or are otherwise damaged or dysfunctional. Helper

T-cells are immune response mediators and play an important role in establishing and

maximizing the capabilities of the adaptive immune response. These cells have no

cytotoxic or phagocytic activity; they cannot kill infected cells or clear pathogens, but, in

essence, "manage" the immune response by directing other cells to perform these tasks

[14]. Figure 2.1 illustrates the basic structure of the biological immune system [6].

Figure 2.1: The Biological Immune System Structure

In terms of information processing, the biological immune system is a fascinating

distributed adaptive system with partially decentralized control mechanisms. The system

7

utilizes feature extraction, signaling, learning, memory, pattern recognition, and

associative retrieval to solve recognition and classification tasks. It has the ability to

learn to recognize relevant patterns, remember patterns that have been seen previously,

and use a combinatorics to construct pattern detectors efficiently. Remarkably, the

overall behavior of the system is an emergent property of many local interactions within

the immune system [4]. As with many other biologically inspired methods, the immune

system provides several important aspects in the field of computational intelligence. In

particular, idiotypic network theory, negative selection mechanisms, clonal selection and

somatic hypermutation theories have emerged in Artificial Immune System models [1, 6,

7].

2.2 Artificial Immune Systems

In the 1990s a new branch of computational intelligence emerged, commonly referred to

as an Artificial Immune System (AIS). Since its inclusion into the field of computational

intelligence, a variety of models have been proposed which are inspired by the biological

immune system. Researchers have explored a variety of applications, including pattern

recognition, data classification, fault detection, network and computer security, data

mining, and numerous others [8]. Despite the Artificial Immune System models gaining

more attention recently, the underlining fundamental methodologies have not changed

dramatically. The most discussed models to date are the immune network models, clonal

selection, and negative selection. Figure 2.2 illustrates the placement of AIS models

within the field of artificial intelligence.

8

Figure 2.2: AIS as a branch of Computational Intelligence [4]

Proposed in the mid-seventies, the earliest form of immune network theory

suggests that the immune system maintains an idiotypic network of interconnected B-

cells for antigen recognition. This particular model is inspired by the biological adaptive

immune system, specifically the humoral branch dealing with lymphocyte B-cells. These

cells work together using stimulation and suppression to attain network stabilization. The

basic principle is that any two B-cells will connect if the affinity they share reaches a

specific threshold; the strength of this connection is directly proportional to the affinity in

which they share [1, 4].

Consequently, in an artificial immune network (AIN) model, populations of B-

cells are divided into two distinct categories: the initial population and the cloned

population. The initial population set is derived from a subset of the raw training data to

create a B-cell network. The remainders of the training data are used as antigen training

items and are selected randomly and presented to areas of the B-cell network. If the

antigen shares an affinity with a B-cell and binds successfully, the B-cell is cloned and

mutated. The mutated B-cell represents a diverse set of antibodies, and an attempt is

9

made to integrate it into the existing B-cell network. If the new B-cell cannot integrate, it

is removed from the network. If the antigen cannot bind with any B-cells in the existing

network, a B-cell is generated using the antigen as a template, and is then incorporated

into the network [4]. This model has become popular in network intrusion detection

systems for computer security [1, 8, 23].

Similar to the artificial immune network, the clonal selection principle describes

the basic features of an immune response to an antigenic stimulus [1, 4, 7]. Operating on

both B-cells and T-cells, clonal selection establishes the foundation that only those cells

that recognize an antigen proliferate, eliminating those which do not. The main features

of clonal selection theory are that new cells are clones of their parent cells, and subject to

high rates of mutation (somatic hypermutation). Proliferation and differentiation occur

whenever mature cells come into contact with antigens. Any lymphocytes (B and T-

cells) which include self-reactive receptors are eliminated [4, 7]. Figure 2.3 illustrates the

concept of the clonal selection principal.

The clonal selection principles should seem obviously similar to other

evolutionary algorithms, such as natural selection. The fittest candidates are the ones

which best recognize an antigen, and therefore are the cells allowed to proliferate; only

the clones which best perform are allowed to mature. The clonal selection algorithms

which exist produce several remarkable features: 1) population sizes dynamically

adjustable, 2) exploitation and exploration of the search space is achieved, 3) location of

multiple optima, 4) capability of maintaining local optima solutions, and 5) defined

stopping criteria [4,7]. Many of the algorithms proposed require minimal control

parameters as each emphasizes self-organization.

10

Figure 2.3: The Clonal Selection Principle [7]

There are many other immunologically inspired algorithms being explored in the

field of computational intelligence. Other features of the immune system being

considered include adaptation, immunological memory and protection against auto-

immune attacks. Approaches have been made to combine the power of the neural

network to immune system models, such as increasing the memory capacity and retrieval

performance using a Hopfield network to aid an associative memory model based on the

immune network [7]. A major branch of Artificial Immune Systems is negative

selection, and is the topic of discussion in the next section. Before an explanation of

negative selection is given, a new theory should be mentioned which may affect the

future of negative selection algorithms. Danger theory is a new theory becoming popular

among immunologists, which explores the discrimination that goes beyond the self/non-

self distinction previously believed. For example, there is no immune response to foreign

bacteria in some of the food we eat. Conversely, some auto-reactive processes are useful,

11

such as attacking self molecules produced by stress. The theory concludes that the

immune system only discriminates “some self from non-self” [1].

2.3 Negative Selection

An important aspect of the biological immune system is its ability to recognize and

categorize all of the cells or molecules in the body as either self or non-self cells.

Through an evolutionary learning process, the immune system is able to distinguish

between foreign antigens (bacteria, viruses, etc.) and the body’s own cells or molecules.

The purpose of negative selection is to ensure that lymphocytic cells are trained to only

eliminate harmful antigens, and to avoid reacting to self cells to avoid internal cellular

damage.

Figure 2.4: The Negative Selection Principle [18]

 The negative selection process begins with the generation of T-cells, where the

receptor sites attached to the lymphocytes are created through a pseudo-random genetic

12

rearrangement process. Within the thymus, they undergo a rigorous censoring process,

where T-cells that react against self-proteins are destroyed. The cells that do not bind to

self-proteins are allowed to leave the thymus. These matured T-cells are then allowed to

circulate in the body and perform immunological functions to protect the body from

harmful foreign pathogens [4]. It is the process of self-nonself discrimination censoring

of the T-cells that is referred to as negative selection, which is illustrated in Figure 2.4.

 The concept of a negative selection algorithm for computational intelligence was

first conceived by Stephanie Forrest in 1994 [9]. Forrest compared the problem of

protecting computer systems to that of learning to distinguish between self and non-self.

It is one of the earliest Artificial Immune System algorithms that was applied to real-

world applications. Since its conception, negative selection algorithms have attracted the

attention of many computational intelligence researchers. While the process has evolved

though various implementations, the fundamental characteristics remain intact.

 Before a formal discussion of the negative selection algorithm can proceed, a new

set of terminology must be defined. The lymphocytic cell receptors which discriminate

between self and non-self cells are called “detectors.” The body’s immunological

functions recognize and categorize antigens, while the negative selection algorithm

operates to classify unknown data. The negative selection algorithm is not appropriate

for general classification tasks because it is a one-class based classification algorithm,

currently only utilized to discriminate between two classes of data. The terms “self” and

“non-self” are artificial labels given to the classification of data instances. For example,

in network security implementations, “self” would refer to standard incoming “safe” data,

while “non-self” would represent data deemed malicious or intrusive to the network.

13

Either the full or partial “self” data set is typically employed for training the negative

selection algorithm.

 The negative selection algorithm consists of two phases: the generation stage

and the detection stage. Beginning with the generation stage, detectors are generated by

some random process and are eliminated if they match any self samples. The matching

criteria are based on the data representation and is discussed later. After a sufficient

number of detectors are generated, determined by certain stopping criteria, the generation

phase is terminated. The collection of retained “mature” detectors (or detector set) is

then implemented in the detection phase. Each unknown data instance is presented to the

detector set and is classified as either self or non-self. If the unknown data instance

matches any detector in the detector set, then it is classified as non-self or an anomaly. If

the incoming data instance is not recognized by any detector, it is safely assumed to be a

member of the self set. The generation and detection phases are shown below in Figure

2.5.

GENERATION STAGE DETECTION STAGE

Figure 2.5: The Basic Concept of the Negative Selection Algorithm [4]

14

 As in any other computational intelligence technique, different negative selection

algorithms are characterized by particular data representation schemes, matching rules

and detector generation processes. The fundamental purpose of a negative selection

algorithm is to classify data; therefore, the algorithm is defined first and foremost by the

data representation scheme. The first implementations of negative selection algorithms

classified strictly binary data. Later on, it was extended to handle data in string

(alphabetic) representation. The focus of this study concerns real-valued data

representation, a more recent topic of research. Negative selection algorithms have also

been modified to handle hybrid data, comprising both real-valued and string data

representations [4].

 The detector generation and elimination mechanisms implemented in a negative

selection algorithm are a defining characteristic of the algorithm. For string data

representation, both randomized algorithms (exhaustive algorithm) and deterministic

algorithms (linear time and greedy algorithm) have been discussed [15, 17]. To date,

only random-based generation schemes have been implemented for real-valued vector

data representation. Numerous strategies are proposed for how the random generation of

detectors are implemented. The classical approach is the random generation and

elimination strategy, and is implemented in this study with different variations. Other

approaches to detector generation include: 1) evolutionary approaches such as genetic

algorithms, 2) one-shot randomized algorithms, 3) optimization with aftermath

adjustment [12, 15, 17].

 A significantly important factor in the performance of the negative selection

algorithm, and focus of this study, is the choice of matching rules implemented for data

15

recognition. The choice of the matching rules or the threshold used in matching rules

must be application specific and data representational dependent. The matching rule is a

measure of distance, affinity or similarity that two data instances share. Regardless of

representation, a matching rule M is symbolically defined as shown below [15].

dMx affinity measure between detector “d” and data instance “x” (2.1)

 Negative selection algorithms were first designed to detect changes in string data.

Several matching rules have been proposed for measuring the affinity of string data. The

Hamming distance or edit distance (equation 2.2) is an obvious choice for string data due

to its simplicity. It is defined as the minimum number of point mutations required to

transform one string data instance into another, where a point mutation is to change a

letter or bit. There is also a variation of the Hamming distance, called the Roger and

Tanimoto distance (R&T), shown in equation 2.3, where ⊕ is the exclusive-OR operator,

and 0 ≤ r ≤ 1 is the threshold value. Another popular matching rule is the rcb (r-

contiguous bits) matching rule [15]. The matching requirement is defined as r contiguous

matching symbols in corresponding positions in a string of arbitrary length broken up

into shorter segments of predefined length. A variation of the rcb matching rule is the r-

chunk matching rule, in which an r-chunk detector is a string of r bits together with a

specific window. The detector d is said to match a string x if all bits of d are equal to the

bits of x in the window specified by d [17]. Many other matching rules exist for string

data representation including alternative variations to the Hamming distance, statistical

correlation and Landscape-affinity matching [15].

16

Hamming Distance : where X, Y = binary n-dimensional vectors (2.2)

Roger and Tanimito Distance : (2.3)

where x, d = binary n-dimensional vectors

 For a real-valued vector data representation, the most common matching rule

equates to a mathematical distance metric. The calculation of a mathematical distance

metric outputs a real number to assign to the affinity, allowing simplistic comparison to

an assigned matching threshold. The most common distance metric implemented is the

Euclidean distance metric, but many others exist. The choice of distance metrics is

central to the content of this thesis, and is discussed further in chapter 3.

 Matching rules have also been formulated for hybrid (or mixed) data

representations. One popular distance metric for handling mixed data is the

Heterogeneous Euclidean-Overlap Metric (HEOM). Another useful metric for

determining similarities in hybrid data is the Heterogeneous Value Difference Metric

(HVDM) [17]. An explanation of each method is provided in equations 2.4 and 2.5.

Alternative matching rules may exist for hybrid data, but these two represent the

standards implemented currently in negative selection algorithms.

Heterogeneous Euclidean-Overlap : (2.4)

where

17

Heterogeneous Value Difference : (2.5)

where

 While data representation, detector generation and matching rules define each

negative selection algorithm, there are several other factors that affect the performance.

The number of detectors affects the efficiency of generation and detection, and

consequently the speed of the algorithm. Linked directly to the accuracy of detection,

detector coverage is also an important factor to consider during detector generation. The

stopping criteria and detector generation schemes are typical control parameters to

determine an adequate number of detectors and coverage. Chapter 3 provides different

implementations of each to optimize detector coverage and accuracy.

 Since gaining recognition, the negative selection algorithm has already undergone

several variations from the original implementation. The combination of negative

selection with alternative classification techniques continues to grow. As mentioned

previously, danger theory is one example of an extension to negative selection

algorithms. Considering network security, danger theory would prove beneficial by

elaborating on the self/non-self discrimination by identifying “non-self but harmless” and

“self but harmful” [1]. Another new approach proposed is to allow the negative selection

18

algorithm to generate non-self samples and then apply a separate classification algorithm

to generate the characteristic function of the self (or non-self). This characteristic

function corresponds to an anomaly detection function, and is able to classify new

samples as either self or non-self. From the proposed approaches published, two

different classification algorithms were tested: 1) a multilayer neural network trained

using back-propagation and, 2) an evolutionary algorithm to generate fuzzy classifier

rules, using a genetic algorithm with a linear representation of tree structures in order to

evolve complex fuzzy rule sets [10, 11].

 The last variation of the negative selection algorithm of significance is a

multilayer artificial immune system which employs both positive and negative selection.

The alternative model of positive selection is suggested to reduce the number of false

detections of self cells classified as non-self [20]. Detectors are generated in the same

fashion for negative selection; but, in addition, a new subset of detectors is generated

using positive selection to capture the knowledge of known self data. When an unknown

data instance is applied to the system, the data instance is classified as non-self only if the

negative selection detectors match and the positive selection detectors do not match

[15,20].

19

CHAPTER 3

Real-Valued Negative Selection Algorithms

The real-valued negative selection algorithm was originally proposed in 2002 [11].

Several important factors determine the characterization and efficiency of a real-valued

negative selection algorithm. By definition, the data and detectors are represented by real-

valued data. The focuses of this study targets the implementation of different matching

rules (distance metrics), detector generation and censoring schemes. The intention is to

evaluate the performance of three different detector generation formats and to compare

their results based on five selected distance metrics.

3.1 Real-Valued Distance Metrics

The selection of an appropriate distance measure is crucial to the overall performance of

a real-valued negative selection algorithm. The entire process of a negative selection

algorithm, or of any learning algorithm, is built on the concept of affinity or distance.

First and foremost in a real-valued negative selection algorithm, the distance metric

determines the shape of a detector in an n-dimensional space. While there are several

control parameters that may be modified to affect the performance of the generation

phase, the distance metric is the central mechanism for the functionality of the algorithm.

The number of detectors generated and the estimation of detector coverage are both

byproducts of the distance metric implemented. Most importantly, during the detection

20

phase, it is the decision rule implemented to classify the unknown incoming data instance

as either self or non-self.

 In Euclidean space Rn, the commonly used Euclidean distance, or 2-norm, can be

generalized to the Minkowski distance of order m, or Lm distance, for any arbitrary m.

For a point (x1, x2, x3, …, xn) and a point (y1, y2, y3, …, yn) in n-dimensional space the

Minkowski distance, or m-norm distance, is defined as shown in equation 3.1 [15,16].

Four of the five distance metrics implemented in this study are simply variations of the

Minkowski distance. The 1-norm distance is called the Manhattan distance metric (3.2),

and is simply the absolute value of the difference between two points in n-dimensional

space. The most common distance metric, and often the first to come to mind, is the

Euclidean distance measure (equation 3.3), also referred to as the 2-norm. The next

distance metric implemented has no special moniker, and is just simply stated as the 3-

norm distance metric (equation 3.4). It is similar to the Euclidean distance, except the

difference is cubed and the summation is cube-rooted. Unlike the Euclidean measure, the

absolute value sign is critical here to avoid imaginary values. The final variation of the

Minkowski distance is the infinity norm distance (equation 3.5). As shown, by taking the

limit as m approaches infinite, it yields the maximum distance between two points in a

single dimension. This distance metric is referred to in subsequent sections as simply the

Max distance metric.

Minkowski Distance : (3.1)

21

Manhattan Distance : (3.2)

Euclidean Distance : (3.3)

3-norm Distance : (3.4)

Infinity Norm Distance : (3.5)

 The final distance metric utilized in this study is fashioned after the rcb matching

rule for string data, but is applied in real-valued data representation. This distance

measure can be described as the partial Euclidean distance. The distance is defined over

some of the elements of the vector, equivalent to the distance projected to a lower

dimensional space degraded from the original space. In other words, the Euclidean

distance is not calculated over all dimensions of a vector of data; only some of the

dimensions are used instead to calculate the distance over a lower-dimensional space. In

this manner, it is similar to partial matching in string representation that only uses some

bits [16]. The measure can be chosen contiguously or randomly, but in either case the

chosen positions need to match between the two points whose distance is calculated.

22

 In the case of this study, the points are chosen contiguously using a mechanism

referred to as a “sliding window.” For example in a four dimensional space, two points

are represented as (x1, x2, x3, x4) and (y1, y2, y3, y4). The partial Euclidean distance

measure would perform the typical Euclidean distance calculation, but only for the points

(x1, x2) and (y1, y2,). Next, the window of observation will “slide” to the next two sets of

data points, (x2, x3) and (y2, y3,), and conclude with (x3, x4) and (y3, y4,). Of the three

separate distances calculated, only the least in size will be retained. Therefore, the partial

Euclidean distance determines the smallest distance in two-dimensional space for n-

dimensional points in space. For all implementations in this study, the window size is

fixed to two, and this distance metric will often be referred to as simply the Window

distance metric.

 One unique feature of the distance metric chosen for a real-valued negative

selection algorithm is the impact it has on the shape of the detectors. The detectors are

assigned a real-valued threshold utilized in self/non-self discrimination, which can be

envisioned as a radius of detection. If a calculated distance is less than this assigned

threshold, the detector is said to “detect” that data instance; therefore, classifying it as

non-self. This set threshold, or radius, combined with the desired distance measure yields

a distinct shape for each detector implementation. Figure 3.1 illustrates the shape of each

detector in two-dimensional space for a given distance metric with the same radius.

23

Figure 3.1: Various Geometric Shapes Associated with Different Distance Metrics [15]

In a previous study, the four distance metrics shown in Figure 3.1 were compared

to estimate coverage. To test the algorithm, experiments were carried out using 2-

dimensional synthetic data over the unit square [0, 1]
2
. Two shapes were used as the

„real‟ self region in these experiments, the “intersection” and “five circles,” as Figure 3.2

shows [15]. For the “intersection” shape, the Euclidean and Manhattan distance

24

measures performed the best. The “five circles” shape yielded nearly equal results for all

four distance metrics with a tenth of a percent difference. However, for the “five circles,”

the 3-norm out-performed the latter, with the Manhattan at a close second.

 (a) Intersection (b) Five Circles

Figure 3.2: Synthetic Data Shapes of Self Regions [15]

The previous experiment further justifies the need for the content of this report.

No research to date studies the effects of different real-valued negative selection

algorithms and analyzes the effects of implementing various distance metrics. The

previously mentioned study is the only study to evaluate the effects on different real-

valued distance metrics, and it only used synthetic data in two dimensions that fit into

symmetric shapes [15]. Because it was only in a two dimensional space, it did not take

into account how each distance metric will perform in an n-dimensional space

discriminating between real world data, or how it may compare to the partial Euclidean

metric described previously.

25

3.2 Negative Selection Algorithm with a Fixed Radius

The first real-valued negative selection algorithm implemented and tested is based on the

techniques proposed by Gonzalez and Dasgupta [11]. The approach uses real-valued data

representation to characterize the self-nonself space and evolve a set of detectors that can

cover the non-self complementary subspace. The inputs to the algorithm are the self

samples represented by n-dimensional points (vectors). The algorithm then attempts to

evolve another set of points (called detectors) to cover the non-self space. This is

accomplished through an iterative process that updates the positions of the detectors

driven by two fundamental goals. The detectors must remain a set distance (threshold)

away from the self points and the detectors must remain separated from other detectors in

order to maximize the non-self space covering. Figure 3.3 illustrates the iterative process

of the detector generation phase, with a thorough discussion to follow [10].

Figure 3.3: Iterative Process of the Detector Generation for Constant Sized Detectors

26

 The generation phase of the real-valued negative selection algorithm

implementing detectors with a fixed radius begins by assigning values to several control

parameters. The total number of detectors generated is a predetermined control

parameter. As mentioned previously, the threshold of a detector is a preset real-valued

assignment to distinguish between self and non-self. The matching criteria in a real-

valued negative selection algorithm are based on a distance metric; therefore, the

threshold value logically takes the form of the detector‟s radius of detection. The

detection threshold is often referred to as the detector‟s radius, or specified as simply r.

Another important control parameter of the algorithm is the adaptation rate ηo, which

controls the initial amount a detector is moved away from other self or detector points.

An additional control parameter τ controls the decay rate of the step size implemented to

move the detector for each iteration. The final control parameter t is a preset maximum

age the detector must reach before being discarded. All of the control parameters become

clearer as the algorithm is discussed in more detail.

 The detector generation phase begins by randomly generating a preset number of

n-dimensional points in space, distributed in a subset of R
n
, specifically [0,1]

n
, with a

mean value of ½. The real-valued data utilized in testing is also normalized within the

subset of [0,1]
n
. The dimensionality of the subspace is determined by the dimensionality

of the test data. Because the parameter r specifies the radius of detection for each

detector, each detector can be envisioned as a hypersphere with a center and fixed radius

in an n-dimensional space. The detectors are trained with only self samples; since it is

undesirable for the detectors to match self points, the shortest allowable distance for a

good detector to the self set is r.

27

 The determination of the distance from any detector to a self point is computed

using the distance metric. For this study, five different distance metrics are separately

implemented. The algorithm begins by calculating the distance from a single detector to

each self point individually, and the shortest distance from the detector to any self point is

stored. If that distance is less than the threshold radius r, the detector is moved;

otherwise, it is stored for the detection phase. Neglecting the first detector, each

subsequent detector also computes the distance to all previously stored detectors, and

again is moved or stored based upon the radius r.

Figure 3.4: Moving a Detector

 The preset adaptation rate parameter ηo represents the initial step size used to

move the detectors. In order to guarantee that the algorithm converges to a stable state, it

is necessary to decrease this parameter in each iteration in such a way that the limi

∞ ηi

=0. Equation 3.6 shows the updating rule for ηi, where ηo is the initial value of the

adaptation rate, τ controls the decay rate, and i is the age of the detector. The movement

of each detector is based on adaptation rate, the current position (center) of the detector,

28

and the direction in which to move the detector. The direction either takes the form of a

positive or negative one, and is calculated based on the shortest calculated distance to any

self point or detector. The nearest self point or detector center is stored along with the

shortest distance computed to this point; the direction is found by equation 3.7, where c

represents the nearest point. Finally, the new location of the detector is determined by

the equation, d(i+1) = d(i) + ηi *dir, where d(i) is the current position (center) of the

detector, and d(i+1) is the new position of the detector.

Adaptation Updating Rule : (3.6)

Direction Computation : (3.7)

Each detector is assigned an age which is incrementally increased after each

iteration of detector movement, provided that its calculated distance is less than r for any

self point or previously stored detector. Each time the detector is moved, the age

increases by one until the detector reaches the maturity age t. If the detector reaches the

maturity age t and has not been able to move out of the self subspace, it is eliminated and

a new detector is randomly generated to replace it. If the detector is able to move out of

the self subspace, the age is reset to zero and the detector is stored.

29

The maturity age is used to discard detectors which are not able to relocate a

distance r from existing detectors and self points. There are two cases that require this

necessity. Because the adaptation rate decays with each movement, it may never be

moved far enough outside of the self subspace. The more likely case concerns self points

and previously stored detectors, in which the detector is moved in the positive direction

outside of the self subspace, but in turn relocates within the detection area of a previously

stored detector. The next iteration of movement will cause the detector to be relocated in

the negative direction, back into the self subspace. This pattern could repeat infinitely

until the maturity age condition is met.

The stopping criterion for the real-valued negative selection algorithm using fixed

sized detectors is based on a pre-specified number of detectors. This is not the best

approach, and obviously provides no guarantee that the non-self space is completely

covered. However, by selecting a large enough value for the number of detectors, the

algorithm is expected to provide adequate results. Figure 3.5 provides pseudo-code for

the generation phase of the algorithm.

After the generation phase has completed, the algorithm begins the detection

phase. Once a predefined number of detectors are generated, each individual unknown

data instance is presented to the detector set. The distance metric is applied for every

detector in the detector set, and if the calculated distance is less than r for any detector,

the detector is said to have detected that data instance. By definition of the negative

selection algorithm, if a data instance is detected, it is classified as non-self. If no

detectors are capable of detecting an unknown data instance, it is classified as self.

30

Real-Valued Negative Selection Algorithm with Fixed Detection Radius

Preset Control Parameters: r, ηo, t, τ, # of Detectors
Generate a random population of Detectors based on # of Detectors

For each detector di,

 Calculate shortest distance to any self point, dist_min, and store nearest point ci

 While (dist_min < r)
 If age > t

 Generate new Detector di,

Else
 Calculate direction (dir) using ci,

Calculate ηi,

Move detector by: d(i+1) = di + ηi *dir
Increase age + 1,

 Recalculate dist_min and ci,

End If

End While
If (Not the first detector),

Calculate shortest distance to all previous detectors and self points, dist_min2,

and store nearest point ci,
 While (dist_min2 < r)

 If age > t

 Generate new Detector di,
Else

 Calculate direction (dir) using ci,

Calculate ηi,

Move detector by: d(i+1) = di + ηi *dir
Increase age + 1,

 Recalculate dist_min2, ci

End If
End While

Store detector as di,

Else

Store detector,
End

Figure 3.5: Real-Valued Negative Selection Algorithm Pseudo-code

This concludes the explanation of the real-valued negative selection algorithm

using a fixed-sized radius of detection. The next algorithm discussed is a more elegant

approach to the negative selection algorithm which incorporates variable-sized detectors.

31

3.3 Negative Selection Algorithm with Variable-Sized Detectors

The first implementation of the real-valued negative selection algorithm generated

detectors in which the distance threshold (or radius) was constant throughout the entire

detector set. However, the detector features can reasonably be extended to overcome this

limitation. Zhou and Dasgupta proposed a new scheme of detector generation and

matching mechanisms for negative selection algorithms which introduced detectors with

variable properties [17]. The proposed algorithm includes a new variable parameter,

which is the radius of each detector. The threshold used by the distance matching rule

defines the radius of the detectors; it is an obvious choice to make variable considering

that the non-self regions covered by detectors are likely to be variable in size. The

flexibility provided by the variable radius is illustrated in Figure 3.6[16].

 a) Constant-Sized Detectors b) Variable-Sized Detectors

Figure 3.6: Comparison of Detector Coverage for Different Detector Schemes

32

 Figure 3.6 actually illustrates several core advantages to the method of

implementing variable-sized detectors. The first apparent advantage is that a larger area

of non-self space is covered by fewer detectors. The issue of “holes” is a well-known

problem with real-valued negative selection algorithms. Tiny spaces between detectors

and self points cannot be filled by constant-sized detectors, as illustrated in black in the

Figure 3.6 (a). However, by using variable-sized detectors as shown in Figure 3.6 (b),

smaller detectors can be generated to cover small holes while larger detectors cover the

wider non-self space.

 Another advantage of the variable-sized detector method not shown in Figure 3.6

is that estimated coverage, instead of the number of detectors, can be utilized as a control

parameter. As the detector set is generated, the algorithm can automatically evaluate the

estimated coverage, providing a much more useful stopping criterion. This is discussed

in greater detail later in this section.

 The variable-sized detector negative selection algorithm, or V-detector algorithm,

functions similarly to the fixed-sized radius algorithm discussed previously. First, a set

of predefined control parameters must be initialized. The most influential of these

parameters is the self threshold, or radius rs. Because the detectors no longer share the

same fixed radius, distinction must be made between the self radius rs and the detector‟s

variable radius rd. The remaining two control parameters that determine the stopping

criteria are the estimated coverage co and the maximum number of detectors Dmax.

Obviously, the eloquence and simplicity begins to become apparent as the control

parameters (ηo, t, τ, dir) required to move each detector are eliminated, making the

initialization of the V-detector algorithm much easier than the previous version.

33

The generation phase of the V-detector algorithm begins by randomly generating

detector candidates; but instead of generating a full set of detectors determined by a fixed

control parameter, it generates detector candidates one at a time. Each individual

candidate is checked using the matching rule determined by the choice of distance metric.

If the distance to the nearest self point is less than the threshold value (self radius rs), the

detector is eliminated and a new candidate is generated. If the minimum distance to any

self point is greater than the self radius rs, then the detector is stored temporarily (the

reason the detector is only stored temporarily is discussed later) and the radius is recorded

as rd, based upon the minimum distance to the nearest self point. This is known as the

aggressive approach to assign a detector‟s radius [16]. Detectors are iteratively generated

and assigned a radius based on this simple mechanism until the stopping criteria is

achieved.

A more conservative approach to detector radius assignment can also be

implemented, whereas the detector radius rd is assigned as the difference between the

nearest self point c and the threshold radius rs of the nearest self point [17]. Both

implementations were initially tested, and the more aggressive strategy proved to produce

more accurate results, and consequently was the method chosen for this study. Chapter 5

discusses how minor modifications to this aggressive strategy can produce optimized

results. Figure 3.7 shows how the conservative detector radius is determined. Figure 3.8

(a & b) illustrates the differences between the conservative and aggressive approaches for

variable radius detectors.

34

Figure 3.7: Calculating the Conservative Variable Detector Radius

a) Conservative Approach b) Aggressive Approach

Figure 3.8: Comparison of Detector Coverage Around a Self Sample

 The control parameters of the V-detector algorithm consist of the self radius rs,

the estimated coverage co, and the maximum number of detectors Dmax. The latter two

are the central mechanisms for the stopping criteria; the maximum number of detectors is

preset to allow the maximum allowable detectors in practice. Estimated coverage is a

35

by-product of the variable detector algorithm. When a detector candidate is generated

and assigned a radius rd based on the implementation described previously, it is not

permanently stored for the detection phase. The detector candidate is then checked to

determine if it can be detected by any previously stored detector. If the detector is

detected, it is eliminated, and the attempt is recorded in a counter which will be used to

estimate coverage. If the detector is not detected by any previously stored detectors, it is

stored permanently for the detection phase and counter is reset to zero. If the counter of

consecutive attempts that fall on covered points reaches a limit mmax, the generation stage

finishes with enough confidence that the coverage is sufficient enough to cover the

nonself space [15].

The limit of the counter mmax is decided by the estimated coverage, i.e., mmax = 1 /

(1-co). Assume “1” is for full coverage. If there is one uncovered point in a set of m

samples, then the estimated uncovered region is 1/m; i.e., the estimate of coverage is co =

1- 1/m [15]. For example, for 99% estimated coverage, (co = 0.99), mmax=100.

The V-detector algorithm converges in one of two ways based on the stopping

criteria. The first convergence scenario occurs when the estimated coverage is attained.

This is the preferred method of convergence, as it displays the power of the V-detector

algorithm to control the number of detectors generated. The alternative convergence

scenario is when the limit of maximum detectors is reached. While not desirable, it still

has the potential to cover more holes than the basic fixed-sized detector negative

selection algorithm. Figure 3.9 provides pseudo-code for the generation phase of the

V-detector algorithm.

36

Real-Valued Negative Selection Algorithm with Variable Detection Radius
Preset Control Parameters: rs, mmax, Dmax
While (m < mmax) || (i < Dmax)

Generate a random Detector candidate di,

Calculate shortest distance to any self points, dist_min,

If (dist_min < rs)
 Return to top,

Else

 If (i = 1)
 Store detector as di and dist_min = rdi,

Increment i + 1

 Else
Calculate shortest distance for each previous detector, dist_min2,

 If (dist_min2 < rd)

 m = m + 1,

 Else
 Store detector as di and dist_min2 = rdi,,

 Increment i + 1

 m = 0,
End If

 End If

End If
End While

End

Figure 3.9: Real-Valued Negative Selection V-Detector Algorithm Pseudo-code

 The detection phase of the V-detector algorithm is almost exactly the same as the

fixed-sized detector algorithm. The only exception is the detector threshold utilized for

the unknown data detection is based on the variable radius rd assigned to each detector.

If an unknown data instance is detected (i.e. the minimum distance to any detector is less

than rd), it is classified as non-self, otherwise it is classified as self.

37

3.3 Negative Selection Algorithm with Proliferating Variable-Sized

Detectors

One of the most recent advances in real-valued negative selection algorithms incorporates

the implementation of proliferating variable-sized detectors [3]. This method, referred to

as the proliferating V-detector algorithm, consists of three stages. It begins with a

generation stage, (very similar to the standard V-detector algorithm), followed by a new

proliferation stage, and finally the detection stage.

 During the generation phase, the detector set is filled with an initial set of

detectors in the same manner as the generation phase for the V-detector algorithm. The

only difference is the assignment of the variable radius rd. Recall two methods were

described for the variable radius assignment, either the aggressive or conservative

approach. The minimum distance dist_min is calculated from a single detector to the

nearest self point, and the variable radius rd is assigned accordingly: 1) aggressive

method rd = dist_min; 2) conservative method rd = (dist_min - rs). The proliferating V-

detector algorithm includes an additional threshold term θ which is also subtracted from

the variable radius rd. In relation to the two methods described above, the aggressive

variable radius would yield rd = (dist_min - θ), and the conservative variable radius

assignment would result in rd = (dist_min - rs - θ). The implementation in this study is

the aggressive approach.

 After the generation phase concludes, the proliferation stage begins to proliferate

(or clone) new detectors from the detector set initially created from the generation stage.

These new detectors are referred to as offspring. At the beginning of the proliferation

stage, the algorithm already has a set of detectors D from the previous generation stage.

38

In the ith iteration, it selects one of those detectors whose center and radius are xi and ri

from the set D, and creates new offspring located at a distance ri from xi. In two

dimensions, the original detector is regarded as a circle of radius ri in the nonself region

centered around xi, and the offspring detectors will be located along the circle‟s

circumference at a location xi + ûri, where û is some unit direction vector [3]. The

offspring‟s radius is set to be equal to the minimum distance from its center to the nearest

self point, but modifications exist with the introduction of an additional threshold θ.

Figure 3.10: Proliferation of a Detector

 Offspring coverage is controlled in the same manner as the detector generation

phase of the V-detector algorithm. Since a new detector has additional coverage value

only when another does not already cover the space, only those offspring detectors which

are not covered are retained for the detection phase. The detectors in D are selected for

proliferation in a sequential manner, and in this implementation the unit vectors û are

kept to be either parallel (+1) or anti-parallel (-1) to each dimension. Hence, in a two

dimensional input space, there are four possible values of û: (1, 0), (-1, 0), (0, 1), and (0, -

39

1). In a three dimensional input space, there are six such vector, eight for four

dimensions, ten for five dimensions, and so on.

 The proliferation stage may involve more than one stage of proliferation. Several

stages of proliferation, where the offspring from one stage is allowed to proliferate in the

next stage, are often desirable. Maintaining the threshold θ initially high during the first

the first generation stage, and lowering it towards zero in a stepwise manner during

subsequent proliferation stages, can result in much better coverage of the non-self

subspace. This is because decrementing the threshold θ at the end of each stage creates a

gap between the self / non-self boundary. This gap can then be filled by the offspring

detectors of the next proliferation stage. Steadily decreasing the gap by lowering θ

results in increasingly smaller, but strategically placed offspring to proliferate around the

self / non-self boundary region. To ensure full coverage of the non-self subspace, the

threshold θ must be set to zero during the last stage of proliferation [3]. Figure 3.11

illustrates this concept, where rd represents the radius of each detector.

Figure 3.11: Examples of each Stage of Detector Proliferation

40

As mentioned previously, this study implements an aggressive approach for the

assignment of the variable radius rd. For the implementation of the proliferating V-

detector algorithm, an additional threshold term θ is required. The proposed algorithm

for this study takes advantage of the self threshold radius rs, and assigns it to the value of

the required threshold θ. Utilizing this method, the initial generation phase is no different

than the conservative approach for variable detector generation and radius assignment. In

subsequent proliferation stages, the threshold value rs are reduced by 50%, 25%, and

finally zero. Two implementations are carried out for this study, one involving three

stages of proliferation, and one comprising only two stages. A more thorough discussion

of these implementations is covered in Chapter 5. Pseudo-code for the implementation of

the proliferation stage is presented at the end of this chapter. New code is not necessary

for the generation phase, as it remains relatively unchanged from the V-detector

generation algorithm.

 The detection phase of the proliferating V-detector algorithm remains completely

unchanged from the basic V-detector algorithm. A variable radius threshold is assigned

to each detector, and a distance measure is calculated for each unknown data instance.

Detection results in the classification of non-self; those not detected are classified as self.

41

Real-Valued Negative Selection Algorithm with Proliferating Variable Detectors

(Proliferation Stage only)
Dold includes all detectors generated in initial generation phase

Note (θ = rs) in generation phase

i=1,

θ = .5 * rs,
For each di (xi, ri) in Dold

For each unit vector û (determined by dimension n of training data)

xj = xi + û ri,

 Calculate distance to nearest detectors, dist_min,

 If (dist_min < ri)
 i = i + 1,

 Return to top,

 Else
 xj stored into Dnew,

 Calculate distance to nearest self point, dist_min2,

 rj = dist_min2 - θ,
 i = i + 1,

 j = j + 1,

 Return to top,
End If

End 1
st
 Proliferation Stage

Begin 2
nd

 Proliferation Stage

j=1,

θ = .25 * rs,
For each dj (xj, rj) in Dnew

For each unit vector û (determined by dimension n of training data)

xk = xj + û rj,

 Calculate distance to nearest detectors, dist_min,

 If (dist_min < rj)
 j = j + 1,

 Return to top,

 Else
 Xk stored into Dnew2,

 Calculate distance to nearest self point, dist_min2,

 rk = dist_min2 - θ,
 j = j + 1,

 k = k + 1,

 Return to top,
End If

End 2nd Proliferation Stage

Repeat for each stage, decrementing θ for each subsequent stage until θ = 0

End

Figure 3.12: Negative Selection Proliferating V-Detector Algorithm Pseudo-code

42

CHAPTER 4

Neural Networks

4.1 Background

The brain is a highly complex, nonlinear information processing system. It has the

capability to organize its structural constituents, known as neurons, to perform certain

computations many times faster than the fastest computer in existence today. Examples

of the brain’s computational functions include pattern recognition, perception, and motor

control. Motivated by recognizing that the human brain computes in an entirely different

way from conventional digital computers, researches have adopted this structure into a

computational model known as artificial neural networks [13].

 In its most general form, an artificial neural network is an information processing

system that is designed to model the way in which the brain performs a particular task or

function. The fundamental information processing unit in the human brain is the neuron,

and likewise is the essential building blocks of any neural network. A neural network is a

massively parallel distributed processor made up of simple processing units (neurons)

that have a natural propensity for storing experiential knowledge and making it available

for use. Like the brain, knowledge is acquired by the network from its environment

(data) through a learning process; interneuron connection strengths, known as synaptic

weights, are used to store the acquired knowledge [13].

43

The original neural network models date back to the 1940’s, and was only able to

solve simple linear problems based on simple binary decision units. The early

implementations of neural networks only included an input and output layer, and were

only capable of classifying linearly separable data patterns. Further investigation and

development led to the inclusion of a hidden layer and more a complex architecture for

each neuron. This allowed the neural network models to begin to solve more complex

nonlinear problems. It was not until the invention of back propagation in the 1980’s that

neural networks finally began to realize their potential as an adaptive learning machine.

An abundance of research has been conducted within the field of artificial neural

networks. The procedure used to perform the learning process, called the learning

algorithm, concerns the modification of the synaptic weights of the network in an orderly

fashion to attain a desired learning objective. The modification of the synaptic weights

has provided researchers with various implementations in the design of neural networks.

The modification of the topology of neural networks has also caught the interest of many

researchers motivated by the fact that neurons in the brain often die and new synaptic

weights are allowed to grow in their place.

Neural network applications offer a wide variety of useful properties and

beneficial capabilities. Neural networks have a built-in capability to adapt their synaptic

weights to changes in their environment. This allows applications in input-output

mapping and the solving of both linear and nonlinear problems. It can be applied to

pattern recognition and data classification, where contextual information is dealt with

naturally by the network. From a hardware perspective, neural networks have the

potential to be inherently fault tolerant, or capable of robust computation due to the

44

distributed nature of information stored in the network. Due to the massively parallel

nature of a neural network, it is well suited for the implementation very-large-scale-

integrated (VLSI) technology [13]. The list of applications and benefits go on, but

suffice it to say it makes for a perfect candidate for comparison to the artificial immune

system negative selection algorithm.

4.2 Artificial Neural Network Model

Artificial neural networks are suitable for cases where the input-output classification of

data is known, but no distinguishable pattern can be easily modeled to determine the

distinction. The artificial neural network approach is a generic technique for mapping the

relationship between inputs and outputs and requires less expertise and experimentation

than traditional modeling of non-linear multivariate systems. The neural network learns

the input-output mapping of a system through an iterative training and learning process.

It contains the built-in ability to update its acquired knowledge on-line for each iteration

of training. This automatic learning property makes a neural network based system

inherently adaptive and ideal for data classification [24].

 The artificial neural network model implemented in this study is a multilayer

feedforward network trained with back propagation. The fundamental unit of this model

is the neuron, known as a multilayer perceptron (MLP). Figure 4.1 illustrates the basic

concept of a multilayer perceptron. The input signals xi are multiplied with their

respective weights wi and then summed together along with the bias bi of each node to

form the intermediate value vi. The weighted connections wi can take on either a positive

value (exciter) or negative value (inhibitor) to guide the output signal to the desired

45

value. The intermediate value vi is subjected to an activation function fi that transforms

the net input of the perceptron depending on the desired range of the output. The final

result of the perceptron is the output value yi [21].

Figure 4.1: Basic Structure of a Multilayer Perceptron [21]

 The general layout of a fully constructed feedforward network consists of an input

layer, hidden layers, and an output layer. The input layer receives the first set of training

data, such as an n-dimensional vector of data whose desired output is known. The hidden

layers consist of an interconnected network of multilayer perceptrons to perform the

learning process. The final layer of the neural network is the output layer, which

produces a final output based on the classification criteria. The output layer could be as

simple as producing a ‘1’ for self or ‘0’ for nonself, if related to the artificial immune

system negative selection algorithm. Figure 4.2 shows the architecture of an artificial

neural network model utilizing multilayer perceptrons.

46

Figure 4.2: Architecture of an Artificial Neural Network

From Figure 4.2, the value specified by the superscript w
[#]

 represents the current

layer of the variable shown. The subscript represents the node at which the variable is

located, and the case of multiple subscripts such as wj,i, the weight wj,i is stated as

connecting node ‘j’ in the current layer to node ‘i’ from the previous layer. In terms of

each multilayer perceptron, the intermediate value vi for a node in a particular layer is

calculated according to Equation 4.1, where N represents the total number of nodes in the

previous layer. The output of the same multilayer perceptron is then calculated according

to the activation function f, and is defined in Equation 4.2. The activation function can

take on many forms designated by the desired output for data classification.

47

Intermediate Value : (4.1)

Output Value : (4.2)

The activation function, denoted by f(vi), defines the output of a neuron in terms

of the intermediate value vi. The most basic activation function is the threshold function,

where any positive value of vi outputs a ‘1’, and any negative value outputs a ‘0’

(equation 4.3). This function is primarily implemented for data sets which require simple

binary outputs. The next activation function, the logistic function, performs in a similar

manner to the threshold function, except the output takes on a value between [0, 1].

Figure 4.3 illustrates the subtle differences between the threshold and logistic activation

functions.

Threshold Function : (4.3)

Logistic Function : (4.4)

 a) Threshold Function b) Logistic Function

Figure 4.3: Plots of Different Activation Functions [13]

48

When the desired range of the output is [-1, 1], the logistic function is often

replaced by the hyperbolic tangent function, expressed as f(vi) = tanh(αvi). Equation 4.5

shows a more practical implementation of the hyperbolic tangent function. It is worth

noting that each of the previously mentioned activation functions accept inputs within the

range [-∞,∞]. When the classification of data sets requires multiple outputs, and each

output belongs to a different class, the softmax function is an ideal choice. The softmax

function, presented in Equation 4.6, forces all of the outputs to sum up to one. Each

output of the softmax function is interpreted as probabilities that the input is of a specific

type [21].

Hyperbolic Tangent Function : (4.5)

Softmax Function : (4.6)

4.3 Learning Process of an Artificial Neural Network

A properly trained neural network must configure its parameters so that the given inputs

yield an output which matches the desired outputs. To correspond with the real-valued

negative selection algorithms, the neural network model proposed in this study has only a

single output node to discriminate between self and non-self data. To begin, first let a

training sample be denoted by (xk, dk), where xk is the stimulus applied to the input layer

and dk is the desired output for that specific input. Let yk denote the actual output

49

produced by the input xk at the output layer of the neural network. Correspondingly, the

error signal produced at the output layer is defined as ek = dk – yk. This is the

instantaneous error for one output associated with one input pattern in the training set.

From this metric, the general measure of a neural network’s performance is defined as the

mean squared error, (where P is the total number of input training patterns). The mean

squared error (MSE) is the basis for the stopping criteria of the network (equation 4.7).

Mean Squared Error : (4.7)

Instantaneous Mean Squared Error : (4.8)

 The first decision to make when training a neural network is which type of

supervised learning method to use. In this research, on-line learning is employed; that is,

adjustments to the synaptic weights of each multilayer perceptron are performed on an

example-by-example basis. The cost function to be minimized is the instantaneous mean

squared error described above. The advantages of using on-line learning are its ability to

track small changes in the training data, thereby providing effective solutions to difficult

pattern-classification problems and ease of implementation [13].

There are a variety of options proposed and available to adjust the parameters of

the network to achieve the desired input/output matching needed for proper data

classification. One of the earliest and most popular of these options is the back

propagation algorithm. The updated value of a synaptic weight is simply adjusted by the

50

addition of a correction term to the previous weight, wj,inew = wj,iold + Δwj,i. The

correction term is proportional to the partial derivative of the energy function with

respect to the corresponding synaptic weight (equation 4.8). Neglecting the derivation, it

is proven that this equation simplifies to the more elegant solution in equation 4.9 [13].

The learning rate η controls the changes to the synaptic weights in the network. The

smaller the value of η, the slower the rate of learning; however, increasing the parameter

too large may lead to the network become unstable (oscillatory).

Weight Correction Term : (4.8)

where the instantaneous error ε = dk -yk

Weight Correction Term (simplified) : (4.9)

 The term δj, referred to as the local gradient, defines the required changes in the

synaptic weights based on the activation function and instantaneous error signal. The

local gradient is defined separately for the cases when the neuron is an output node or a

hidden node. For an output node j, the local gradient δj is equal to the product of the

corresponding error signal ej for that neuron and the derivative fj’(vj) of the associated

activation function. The activation function implemented in this study is the logistic

function, and the associated derivative simplifies to Equation 4.10 [13]. Therefore, in the

case of an output neuron j, the local gradient δj is defined as Equation 4.11.

51

Derivative of Logistic Function : (4.10)

Local Gradient for Output Neuron j : (4.11)

 When neuron j is located in a hidden layer of the network, there is no specified

desired response for that neuron. The error signal for a hidden neuron must be

determined recursively, working backwards in terms of the error signals of all neurons to

which that hidden neuron is directly connected. This is where the name back propagation

originates. Equation 4.12 describes the back propagation formula for the local gradient

of a hidden neuron j after simplifying the derivative of the logistic function [13]. The

formula utilized to update the synaptic weights is now generalized to Equation 4.13.

 Local Gradient for Hidden Neuron j : (4.12)

Synaptic Weight Update Formula : (4.13)

 For the on-line learning approach utilized in this study, an input sample pattern is

fed into the network and an error signal is produced. The error signal is then back

propagated through the network to adjust the synaptic weights for each neuron. The

iteration of forward and backward computations repeats until all input samples within the

training set have been exhausted. The order of the training samples is then randomly

rearranged and another training pass is conducted. This training continues to repeat until

a preset number of iterations are reached. After the preset number of training iterations

52

completes, the weights are fixed and the neural network calculates the average MSE from

all input-output pairs. If the MSE is less then some preset threshold, MSEth, then the

algorithm terminates and testing begins. If the MSE is greater than the threshold, it

resumes training for another preset number of iterations.

 The testing phase of the neural network is very similar to the detection phase of

the negative selection algorithm. Each unknown data instance is presented to the

algorithm, and the network produces an output corresponding to the class in which the

data belongs. To remain consistent with the negative selection algorithm, the neural

network algorithm produces an output value between [0, 1]. A decision threshold of 0.5

either classifies the data as ‘1’ (self) if yout ≥ 0.5 or ‘0’ (non-self) if yout < 0.5. Figure 4.4

provides pseudo code for the neural network algorithm on the following page.

53

Multilayer Feedforward Neural Network with Back Propagation

(1 Hidden Layer)

Initialize parameters: a, η, bias (b), MSEth ,iter_countmax

Randomly assign weights with zero mean, std = 1.0

iter_count=0

Begin Training Phase:

While (iter_count<iter_countmax)

Randomly rearrange Training Set P1,

For p=1, P1 (where P1 is total # input-output pairs of training set),

Assign the input of training sample to yi,

Calculate vj = sum(yi*wj,i) + bi*wbi,

Calculate logistic function output, yj = 1 / (1 + exp(-a*vj)),

Calculate vk for output neuron, vk = sum(yj*wk,j) + bj*wbj,

Calculate logistic function output, yk = 1 / (1 + exp(-a*vk)),

Calculate error signal, ek = (dk – yk),

(Begin Back Propagation)

Calculate local gradient of output, δk = a*ek *yk*(1-yk),

Update weights of output layer, wk,jnew = wk,jold + (η* δk*yj),

Calculate local gradient of hidden layer, δj = a*yj*(1-yj)*sum(δk*wk,j),

Update weights of hidden layer, wj,inew = wj,iold + (η* δj*yi),

End For

iter_count=iter_count+1,

End While

Stopping Criteria:

Calculate MSE = 1/P1 sum(ek
2
 / 2) for P1 training samples

If (MSE < MSEth)

 End Training Phase, move down to Testing Phase,

Else

iter_count=0,

Resume Training Phase,

End If

Begin Testing Phase:

For p=1, P2 (where P2 is total # input-output pairs for testing set)

Assign the input of testing sample to yi,

Calculate vj = sum(yi*wj,i) + bi*wbi,

Calculate logistic function output, yj = 1 / (1 + exp(-a*vj)),

Calculate vk for output neuron, vk = sum(yj*wk,j) + bj*wbj,

Calculate logistic function output, yk = 1 / (1 + exp(-a*vk)),

If yk ≥ 0.5

 Classify as self

Else

 Classify as non-self

End if

End For

Figure 4.4: Multilayer Feedforward Neural Network Algorithm Pseudo-code

54

CHAPTER 5

Testing and Results

The purpose of this study is to evaluate the affects of different distance metric on three

distinct implementations of the real-valued negative selection algorithm. The

implementation of a multilayer feedforward neural network with back propagation is

employed as a comparison model, traditionally utilized in the field of computational

intelligence for data classification. This chapter discusses the datasets utilized in testing

in meticulous detail. The discussion includes the methodology behind the

implementation of each algorithm, along with the experimental techniques to optimize

each algorithm. The study includes balanced testing procedures and explanations of

experimental decisions to handle distinctions between the neural network and negative

selection algorithms. The chapter concludes with experimental results and final

conclusions based on these results.

5.1 Datasets

Three distinct datasets are used in the experiments implemented in this study. The first

dataset is the famous Fisher's Iris Dataset [2], which has been widely used in

discrimination analysis. The dataset consists of 50 samples from each of three species of

Iris flowers (Iris setosa, Iris virginica and Iris versicolor). Four distinct features were

55

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.65 0.7 0.75 0.8 0.85 0.9

S epal L eng th

S
e

p
a

l
W

id
th

S etosa
Vers icolor
Virginica

0

0.05

0.1

0.15

0.2

0.25

0.3

0.1 0.2 0.3 0.4 0.5 0.6 0.7

P etal Width

P
e

ta
l

L
e

n
g

th

S etosa
Vers icolor
Virginica

measured from each sample; the length and the width of sepal and petal. Therefore, the

data set includes 150 total datasets, each a vector of four dimensions.

 To better understand the distribution of the Fisher Iris dataset, plots were

generated to graphically illustrate the datasets characteristics in two dimensions. Figure

5.1 shows the plot of the first two dimensions, sepal length and width, while Figure 5.2

provides the third and fourth dimensions, petal length and width. Before the plots were

produced, the datasets were first normalized to values between [0, 1].

Figure 5.1: Distribution of 1
st
 and 2

nd
 Dimensions of Iris Dataset

Figure 5.2: Distribution of 3
rd

 and 4
th
 Dimensions of Iris Dataset

56

The Iris-Setosa data shown in blue is clearly separated from the other two

datasets, making classification easy. The remaining two datasets, Iris-Versicolor in violet

and Iris-Virginica in green, are intermingled but centralized. While this makes data

classification more difficult, the fact that each dataset is clustered close together makes

discrimination less cumbersome than the next dataset to be discussed.

The second dataset, referred to as Biomedical Data [22], is from blood

measurements of 194 patients, after removing those datasets which are missing data

points. The dataset arose in a study to develop screening methods to identify carriers of a

rare genetic disorder. Of the 194 datasets, 127 are classified as “normal” or free of the

disorder, and the other 67 are identified as “carriers” of the disorder. Each patient had

four different types of blood measurements, yielding a total of 194 data sets with four

data points in each set.

Figures 5.3 provides perspective of the dataset‟s distribution for the first two

dimensions, and Figure 5.4 displays the third and fourth dimensions. Clearly, the

distribution of the Biomedical Dataset is much more complicated than the Iris Dataset.

The normal dataset in blue is heavily intermingled within a cluster of carrier data points,

and proves to be very difficult to discriminate precisely. The carrier dataset is slightly

easier to classify because some outlier points are easily separable from the central cluster

of data points.

57

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1s t B lood Meas urement

2
n

d
 B

lo
o

d
 M

e
a

s
u

re
m

e
n

t

Normal

C arrier

Figure 5.3: Distribution of 1
st
 and 2

nd
 Dimensions of Biomedical Dataset

Figure 5.4: Distribution of 3
rd

 and 4
th
 Dimensions of Biomedical Dataset

 The final dataset tested in this study is the BUPA Liver Disorder [2].

Performed by the BUPA Medical Research Ltd, the first 5 variables are all blood tests

which are thought to be sensitive to liver disorders that might arise from excessive

alcohol consumption; the last variable represents the number of alcoholic beverages

consumed daily. The dataset comprises measurements of 345 patients, 200 of which

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.05 0.1 0.15 0.2 0.25

3rd B lood Meas urement

4
th

 B
lo

o
d

 M
e

a
s

u
re

m
e

n
t

Normal

C arrier

58

were designated “clean” from the disorder; the remaining 145 are labeled as “disorder”.

Figures 5.5 – 5.7 illustrate the distribution of the data for the 1
st
-2

nd
, 3

rd
-4

th
, and 5

th
-6

th

dimensions respectively. The complex distribution and increase in dimensionality and

sample size over the Biomedical Dataset made this an ideal choice for the final dataset.

Figure 5.5: Distribution of 1
st
 and 2

nd
 Dimensions of BUPA Dataset

Figure 5.6: Distribution of 3
rd

 and 4
th
 Dimensions of BUPA Dataset

Normalized BUPA Data (3rd & 4th)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

3rd Measurement

4
th

 M
e

a
s

u
re

m
e

n
t

Disorder

Clean

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1st Measurement

2
n

d
 M

e
a

s
u

re
m

e
n

t

Disorder

Clean

59

Figure 5.7: Distribution of 5
th
 and 6

th
 Dimensions of BUPA Dataset

5.2 Testing Methodology and Algorithm Optimization

This section describes the various testing methodologies and optimization techniques to

produce the best possible results for each algorithm. It revisits several references to the

algorithms proposed in the previous chapters and how minor adjustments can achieve

optimal implementations. The section concludes by covering general similarities that

each implementation shares and formally discussing the distinctions of each algorithm

separately.

 The general purpose of this study is to test an algorithm‟s ability to classify real-

valued data. For the generation (or training) phase of each negative selection algorithm,

the input data consists of only self data. In this study, self data is assigned separately to

each class of data. In regards to the Iris dataset, one type of flower is designated as self,

while the other two are assumed non-self. Therefore, three separate tests are conducted

for the Iris dataset, one for each class of flower assigned as self. Since the remaining two

datasets only have two classes, only two separate tests are conducted for each dataset.

Normalized BUPA Data (5th & 6th)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

5th Measurement

6
th

 M
e

a
s

u
re

m
e

n
t

Disorder

Clean

60

The self data assignment to a dataset is further separated into different test cases.

The methodology implemented in this study analyzes two cases, one in which the

negative selection algorithm is trained with 100% of the self data class, and the other is

trained with only 50% of the self data class. This results in fourteen separate tests for a

single negative selection algorithm with a specific distance metric. Each test is trained

with the following self data classes: 100% Setosa, 50% Setosa, 100% Versicolor, 50%

Versicolor, 100% Virginica, 50% Virginica, 100% Normal, 50% Normal, 100% Carrier,

50% Carrier, 100% Clean, 50% Clean, 100% Disorder and 50% Disorder.

 There is a major distinction between the negative selection and neural network

algorithm. While a negative selection algorithm, by design, requires training of only one

class of data, the neural network algorithm must be trained with samples from both

classes of data. The results section of this chapter provides evidence to support this

claim, and led to modifications to the training data to address this issue. The final portion

of this section will address these changes along with a formal discussion of the

implementation of the neural network model.

Originally introduced by the first implementation of a real-valued negative

selection algorithm, two performance metrics are utilized to evaluate their effectiveness,

the detection rate and false alarm rate [10]. The detection rate (DR) is defined as the

number of correctly identified non-self points divided by the total number of non-self

data points multiplied by 100%. This yields a percentage of correctly identified non-self

points, signifying how well the algorithm detected anomalies. Conversely, the false

alarm rate (FA) is calculated as the number of self points classified incorrectly divided by

the total number of self data points. This produces a percentage of self points classified

61

incorrectly, signifying how poorly the algorithm misclassified self data as an anomaly. A

figure of merit (FOM) is formulated for the need to determine an overall final score for

the performance of the algorithm, which is defined as the false alarm rate subtracted from

the detection rate (DR-FA). The figure of merit is a method of comparing how well the

algorithm detects anomalies while simultaneously penalizing it for self misclassifications.

The real-valued negative selection algorithm with a fixed-sized radius is the first

model implemented in this study. The initialization of the control parameters vary for

each dataset to achieve the best performance. For the Iris Dataset, the adaptation rate ηo

= 0.005, the decay rate τ = 15, the maximum age t = 15, and the total number of

detectors is 1000. For the Biomedical Dataset, the adaptation rate ηo = 0.0025, the decay

rate τ = 10, the maximum age t = 15, and the total number of detectors is 1000. For the

BUPA Dataset, the adaptation rate ηo = 0.0025, the decay rate τ = 10, the maximum age t

= 15, and the total number of detectors is 5000. The major difference for the BUPA

dataset implementation is the total number of detectors generated, which was required to

produce adequate coverage of the non-self space.

Several experimental tests are performed to decide the ideal values of control

parameters. The most crucial control parameter i.e., detector radius r, requires extensive

analysis to determine the optimal value. The worst case scenario defined as the most

difficult dataset implementation to correctly classify is identified for each dataset: 1) Iris

Dataset = 50% Virginica, 2) Biomedical Dataset = 50% Normal, and 3) BUPA Dataset

= 50% Clean. Five seed detectors sets are randomly generated for implementation of

various detector radii. The FOM proposed earlier is the basis for measuring the

efficiency of each test, and is averaged over the five seed detector results to yield an

62

overall percentage of accuracy. Understanding that each distance metric will attain

optimal results for different detector radii, each distance metric is tested for each dataset.

The optimization results are plotted with the radius along the x-axis and the average FOM

along the y-axis, and are displayed in Figures 5.8 - 5.10.

Similar testing strategies are employed to determine an optimal number of

detectors for the BUPA Dataset. The initial attempts to optimize the BUPA data are

highly unsuccessful with only 1000 detectors. The five seed detectors are again utilized

using only the Euclidean distance measure to determine an adequate number of detectors

to produce sufficient results. While even at 5000 detectors the Euclidean FOM scores

seemed low, by performing optimization techniques for the remaining distance metrics it

is concluded that 5000 detectors is sufficient. Increasing beyond 5000 detectors required

extensive time consumption (48-72 hours), and often resulted in algorithm failure due to

the impossibility to „fit‟ more detectors into the non-self subspace. Figure 5.11 shows a

plot of the effects of increasing detector counts corresponding to a change in radius and

FOM score.

63

0

10

20

30

40

50

60

70

80

90

0 0.05 0.1 0.15 0.2 0.25

Radius

F
O

M

Euclidean Manhattan 3-Norm MAX Window

0

10

20

30

40

50

60

70

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

Radius

F
O

M

Euclidean Manhattan 3-Norm MAX Window

Figure 5.8: Iris Data Radius Optimization Plot for Various Distance Metrics

Figure 5.9: Biomedical Data Radius Optimization Plot for Various Distance Metrics

64

0

10

20

30

40

50

60

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

Radius

F
O

M

Euclidean Manhattan 3-Norm MAX Window

Figure 5.10: BUPA Data Radius Optimization Plot for Various Distance Metrics

Figure 5.11: Detector Count Optimization Plot for Euclidean Distance Metric

0

2

4

6

8

10

12

14

16

18

20

0 0.05 0.1 0.15 0.2 0.25 0.3

Radius

F
O

M

D=1000 D=2000 D=3000 D=4000 D=5000

65

For the real-valued negative selection algorithm using a fixed-sized radius,

making a slight modification assists in the detector placement. Previously, a detector is

only stored if the minimum calculated distance to the nearest self point or nearest detector

center is greater than the detector threshold radius r. As the number of detectors stored

increases, it is difficult to allow space for more incoming detectors to find placement. A

modification to the placement criterion allows detector overlap and results in multiple

benefits. The detector is still required to remain a fixed distance r from the nearest self

point, but is now allowed to be within 0.25r to the nearest detector. This amount of

detector overlap allows the possibility of a greater number of detectors to be placed, and

also increases the amount of non-self subspace coverage. By allowing overlap, the

„holes‟ produced by detectors spaced a distance r away from each other are now filled,

since the radius of each detector still remains fixed at r.

Formal presentation of individual radius assignments and analysis of the final

results for the fixed-sized detector algorithm are covered in the next section of this

chapter. The next topic of discussion is the V-detector algorithm, a new sophisticated and

intelligent approach to the negative selection algorithm.

Two different implementations of the real-valued negative selection algorithm

with variable detectors (V-detector) are tested. The first implementation is exactly the

same as the proposed algorithm in Chapter 3. The two control parameters, estimated

coverage co and maximum number of detectors Dmax, are predetermined for each data set

as: 1) Iris co = 99.9%, Dmax = 250, 2) Biomedical co = 99.99%, Dmax = 250, and 3)

BUPA co = 99.98%, Dmax = 1000. The self radius, rs, is still the same as the detector

66

radius implemented in the fixed sized detector algorithm. This first implementation did

not yield satisfactory results, and required several modifications to achieve optimal

results.

The optimized second implementation of the V-detector algorithm produces

superior results over the original method. The estimated coverage co and maximum

number of detectors Dmax are not changed, but the self radius threshold is modified.

Similarly as before, several tests are performed to determine the optimal value of the self

radius. For both the Iris and Biomedical datasets, a unique method is employed which

sets the self radius as the average standard deviation of the training data samples. This

allows the self radius threshold to vary proportionally to the distribution of the self data.

The BUPA dataset did not allow this methodology, because the distribution of the data

across six dimensions varies so much that the standard deviation was too large to

adequately represent the self radius. For the BUPA dataset, individual self radius

optimization tests are required for each distance metric to produce optimal results.

Similar to the fixed sized radius algorithm, detector overlap is also implemented in the

modified V-detector algorithm. This allows the possibility of the placement of a greater

number of detectors before the estimated coverage is reached, and simultaneously

removes „holes‟ and improves non-self space coverage.

Additional modifications are devised for the second implementation of the V-

detector algorithm. In Chapter 3, two methods are discussed regarding the assignment to

the variable radius rd. It is specified that this study implements the aggressive approach,

where rd is set equal to the minimum distance to the nearest self point. This value is

actually modified to allow a small amount of variability in the self data. Instead of

67

assigning rd = dist_min, the modified variable radius is rd = (dist_min*(1-rs)). By

performing this modification, if rs=0.01, then rd= dist_min*.99, or 99% of dist_min.

While this may seem counter intuitive to achieving better non-self coverage, it actually

decreases false alarm rates greatly while minimally lowering detection rates, therefore

improving FOM scores.

The final real-valued negative selection algorithm implementation is the

proliferating V-detector. Like the V-detector algorithm, there are tests for two separate

implementations of this algorithm. The first implementation utilizes the same radius

assignment from the fixed-sized algorithm for the self radius rs. The proliferation

consists of three stages, where the additional threshold θ = rs for the initial generation

stage. For each subsequent proliferation stage, θ takes on the following values: 1
st
 stage

= (0.5* rs), 2
nd

 stage = (0.25* rs), and 3
rd

 stage = (θ=0). The estimated coverage and

maximum number of detectors are the same for each dataset, co = 99.98% and Dmax =

250. Due to the poor choice of rs and three stages of proliferation, this algorithm

produces poor results with the longest runtime (72+ hrs).

The modified proliferating V-detector algorithm makes several improvements

over the initial implementation. First, the self radius is optimized for each particular

dataset, as performed for the various algorithms previously. The standard deviation did

not provide adequate results for this algorithm, so optimized values were chosen by the

iterative testing process of comparing FOM scores for each radius assignment. The

maximum number of detectors is raised to Dmax = 500, and estimated coverage is

increased to co = 99.99%. Because the proliferating V-detector implementation produces

68

overlapping offspring detectors which fills „holes‟ adequately by design, no additional

detector overlap was needed.

The modified proliferating V-detector algorithm only implements two stages of

detector proliferation. Experimental tests proved that three-stage proliferation increased

the total number of detectors generated with little to no change in the overall figure of

merit score. The only factor which increased dramatically was the amount of time each

algorithm required to run a single trial. The final modification is similar to the variable

radius assignment implemented in the modified V-detector algorithm. For the modified

proliferating V-detector algorithm, the final stage of proliferation does not assign the

threshold θ=0, but rather allows small percentage of the threshold to remain. In the final

stage of proliferation, the variable radius is rd = (dist_min –(0.1 * θ)). Again, this is

performed to decrease false alarm rates while minimally affecting detection rates,

producing improved figure of merit scores.

The final algorithm in this discussion is the multilayer feedforward neural

network model. The neural network model consists of one hidden layer with fifteen

hidden neurons. The control parameters were preset identically for each dataset, with the

learning rate η = 0.2, a = 1 and all bias values bi = 1. To achieve optimal results, the

stopping criteria threshold MSEth was decreased for each experimental test until the

algorithm was no longer capable of converging. The minimal values of MSEth yielding

optimal results are 0.01 for the Iris Dataset, 0 .07 for Bio, and 0.08 for BUPA.

A major distinction between the neural network and negative selection algorithm

concerns the choice of training data. For a negative selection algorithm, the input to the

system consists of only self data, either 100% or 50%. The neural network model, by

69

design, cannot be trained with only self data. If the training data all share the same

desired value, for example self = 1, then the dynamics of the back propagation algorithm

fail to train the algorithm properly to identify any new incoming data instance as anything

besides 1. Future testing procedures in the next section will prove this hypothesis.

Because the neural network cannot be trained with only self data, a new methodology is

required to implement a fair training comparison.

 Similarly to the negative selection algorithm training with 100% and 50% of

the self data, for the neural network the datasets are split into two training sets, 50% and

25%. The 50% training set consists of 50% self data and 50% non-self data. Likewise,

the 25% training set consists of 25% self data and 25% non-self data. Table 5.1 shows

the training data distribution. Note for the Iris Dataset there are three classes of data, and

therefore three versions of each training dataset were formulated, in which the flower of

interest is designated as self. For the Iris non-self column in Table 5.1, the addition

equation represents the number of datasets from each flower designated as non-self.

Table 5.1: Training Data Distribution for Neural Network Implementation

Training Set Self Non-self Total Data Sets

50% Iris 25 25 + 25 = 50 75

25% Iris 13 13 + 13 = 26 39

50% Bio 64 Normal 33 Carrier 97

25% Bio 32 Normal 17 Carrier 49

50% BUPA 72 Clean 100 Disorder 172

25% BUPA 36 Clean 50 Disorder 86

70

5.3 Experimental Testing and Results

The implementation of each algorithm depends on a certain degree of randomness, from

the detector generation placement of the negative selection algorithm to the initial weight

assignments of the neural network model. Due to highly random nature of each

algorithm, 50 trials are conducted for each experimental test performed. Consider for

each negative selection algorithm implemented using a different distance metric, 14

distinct datasets are tested. Five total negative selection algorithm versions are tested; the

fixed sized detector, two versions of the V-detector, and two versions of the proliferating

V-detector algorithm. Each version is tested for five different distance metrics. The

neural network model required ten different dataset configurations, which combined with

the 350 unique negative selection tests; means a total of 360 experimental tests are

performed. Because each test was averaged over 50 trials, the total number of

experimental trials conducted is 18,000. This does not include the several hundreds of

tests performed to achieve optimal results before each final test is implemented.

 The experimental testing for each real-valued negative selection algorithm yields

four important performance metrics. The detection rate (DR) yields a percentage of

correctly identified non-self points, while the false alarm rate (FA) produces a percentage

of self points classified incorrectly. The figure of merit (FOM) is a method of comparing

how well the algorithm detects anomalies while simultaneously penalizing it for self

misclassifications, and is a byproduct of detection rate and false alarm rate, calculated as

(DR-FA). The fourth performance metric is the average total number of detectors

implemented for each test. While not an actual measure of the algorithm‟s efficiency, it

71

is discussed later as an additional method of comparison to determine the best candidate

when implementing a negative selection algorithm.

The first real-valued negative selection algorithm tested was for the case of fixed

sized detectors. The results for each distance metric for the Iris dataset are provided in

Tables 5.2-5.6. This is only a sample of the results tabulated to illustrate content and

formatting for each experimental trial. There are over 75 tables of results produced for

this study, and the inclusion of an appendix of results is neglected to reduce the number

of pages for this report. Appendix A provides a brief comprehension of the intermediate

results for detection rate and false alarm rate. A complete catalogue of data tables and

specific Matlab code implementations is in the accompanying CD-ROM included with

this report.

FINAL RESULTS Detection Rate (%) False Alarm (%) F.O.M. Detector Count

Datasets Mean Std. Dev. Mean Std. Dev. (DR%-FA%) Mean Std. Dev.

Setosa 100% 100 0 0 0 100.00 1000 0

Setosa 50% 100 0 10.18 1.623 89.82 1000 0

Versicolor 100% 91.36 4.758 0 0 91.36 1000 0

Versicolor 50% 95.02 3.491 12.64 4.052 82.38 1000 0

Virginica 100% 95.34 5.113 0 0 95.34 1000 0

Virginica 50% 97.16 1.687 16.04 5.085 81.12 1000 0

Table 5.2: Final Results for Fixed Sized Radius using Manhattan Distance Metric

FINAL RESULTS Detection Rate (%) False Alarm (%) F.O.M. Detector Count

Datasets Mean Std. Dev. Mean Std. Dev. (DR%-FA%) Mean Std. Dev.

Setosa 100% 100 0 0 0 100.00 1000 0

Setosa 50% 100 0 7.56 3.199 92.44 1000 0

Versicolor 100% 83.7 10.07 0 0 83.70 1000 0

Versicolor 50% 89.04 7.473 8.32 3.33 80.72 1000 0

Virginica 100% 93.38 8.166 0 0 93.38 1000 0

Virginica 50% 92.3 10.809 13.12 4.734 79.18 1000 0

Table 5.3: Final Results for Fixed Sized Radius using Euclidean Distance Metric

72

FINAL RESULTS Detection Rate (%) False Alarm (%) F.O.M. Detector Count

Datasets Mean Std. Dev. Mean Std. Dev. (DR%-FA%) Mean Std. Dev.

Setosa 100% 99.88 0.5206 0 0 99.88 1000 0

Setosa 50% 99.92 0.338 6.96 3 92.96 1000 0

Versicolor 100% 79.78 11.07 0 0 79.78 1000 0

Versicolor 50% 86.18 9.652 8.84 3.504 77.34 1000 0

Virginica 100% 87.44 11.362 0 0 87.44 1000 0

Virginica 50% 92.42 8.379 11.44 5.267 80.98 1000 0

Table 5.4: Final Results for Fixed Sized Radius using 3-Norm Distance Metric

FINAL RESULTS Detection Rate (%) False Alarm (%) F.O.M. Detector Count

Datasets Mean Std. Dev. Mean Std. Dev. (DR%-FA%) Mean Std. Dev.

Setosa 100% 100 0 0 0 100 1000 0

Setosa 50% 100 0 12.4 4.37 87.6 1000 0

Versicolor 100% 93.76 3.1 0 0 93.76 1000 0

Versicolor 50% 97.54 1.89 16.08 3.49 81.46 1000 0

Virginica 100% 96.4 2.55 0 0 96.4 1000 0

Virginica 50% 97.54 1.71 21.8 4.77 75.74 1000 0

Table 5.5: Final Results for Fixed Sized Radius using ∞-Norm Distance Metric

FINAL RESULTS Detection Rate (%) False Alarm (%) F.O.M. Detector Count

Datasets Mean Std. Dev. Mean Std. Dev. (DR%-FA%) Mean Std. Dev.

Setosa 100% 100 0 0 0 100 1000 0

Setosa 50% 100 0 13.52 1.42 86.48 1000 0

Versicolor 100% 92.62 1.028 0 0 92.62 1000 0

Versicolor 50% 97.86 0.869 16.08 1.744 81.78 1000 0

Virginica 100% 98.98 0.141 0 0 98.98 1000 0

Virginica 50% 99 0 24.6 2.16 74.4 1000 0

Table 5.6: Final Results for Fixed Sized Radius using Partial Euclidean Distance Metric

The FOM performance metric is tabulated in the previous result tables for each

designated training dataset. The computation of the average FOM score for each

algorithm implementation uses two separate methods. The total FOM score represents

the average FOM of all data training sets, simply computed by averaging all data in the

73

FOM column. The 50% FOM score is the average FOM score only for the cases when

50% of the self data is utilized for training. This score is indicative of the case when not

all „self‟ data is available for training, and provides better insight into the efficiency of

each algorithm. Table 5.7 is a condensed version of the final results for the negative

selection algorithm using fixed sized detectors for each dataset, which only includes the

designation of the detector radius and two FOM performance metrics.

Radius Distance Metric Total FOM 50% FOM D #

Iris Dataset

Constant R=0.1 Euclidean 88.24 84.11 1000

Constant R=0.1 Manhattan 90.00 84.44 1000

Constant R=0.06 Partial Euclidean (Window) 89.04 80.89 1000

Constant R=0.1 3-Norm 86.40 83.76 1000

Constant R=0.2 Infinity Norm (MAX) 89.16 81.60 1000

Biomedical Dataset

Constant R=0.15 Euclidean 26.56 27.93 1000

Constant R=0.15 Manhattan 32.20 30.95 1000

Constant R=0.05 Partial Euclidean (Window) 59.01 53.32 1000

Constant R=0.15 3-Norm 26.89 28.39 1000

Constant R=0.25 Infinity Norm (MAX) 27.65 26.64 1000

BUPA Dataset

Constant R=0.175 Euclidean 23.49 21.86 5000

Constant R=0.2 Manhattan 36.43 32.76 5000

Constant R=0.01 Partial Euclidean (Window) 74.16 50.38 5000

Constant R=0.2 3-Norm 23.22 21.42 5000

Constant R=0.25 Infinity Norm (MAX) 24.63 21.96 5000

 Table 5.7: FOM Final Results for Fixed Sized Radius

The next real-valued negative selection algorithm tested is the variable radius

technique. Two versions of the V-detector algorithm is tested. The first method employs

the same strategies proposed in Chapter 3 for the V-detector algorithm, and retains the

same value for rs designated in the previous implementation for the fixed sized radius.

74

The second method is a modified version of the V-detector algorithm, where several

aspects of the algorithm are improved to achieve optimal results. The modified V-

detector algorithm includes the additional benefit of assigning optimal values for rs based

upon several preliminary testing results. Tables 5.9 and 5.10 provides the final results for

each implementation.

An important distinction between the fixed radius and V-detector algorithms is the

assignment of the detector radius and stopping criteria. The V-detector implementation

does not rely on the generation of a fixed number of detectors, but instead relies heavily

on the estimated coverage stopping criteria. Therefore, the number of detectors generated

for each implementation of the V-detector algorithm is an important performance metric

worth mentioning. Table 5.8 is an example of the results tabulated for a single modified

V-detector algorithm trained with Biomedical Data. Notice the average number of

detectors generated and standard deviation of detector generation are now included in the

data results. The column (D #) in Tables 5.8-5.10 represents the total average of

detectors generated for every training instance.

FINAL RESULTS Detection Rate (%) False Alarm (%) FOM Detector Count

Datasets Mean Std. Dev. Mean Std. Dev. (DR%-FA%) Mean Std. Dev.

Normal 100% 77.55 2.61 0 0 77.55 362.52 17.57

Carriers 100% 34.65 63.4 0 0 34.65 239.16 11.01

Normal 50% 83.22 3.2 25.8 2.05 57.42 276.76 16.92

Carriers 50% 56.44 6.84 32.84 3.5 23.6 213.16 12.24

 D # = 272.9

Table 5.8: Final Results for Modified V-Detector using Euclidean Distance Metric

75

Table 5.9: FOM Final Results for Original V-Detector Implementation

Radius Distance Metric Total FOM 50% FOM D #

Iris Dataset

Rs=std(T) Euclidean 89.66 87.97 15.53

Rs=std(T) Manhattan 87.30 85.63 13.19

Rs=std(T) Partial Euclidean (Window) 88.93 85.02 11.18

Rs=std(T) 3-Norm 89.05 86.74 17.18

Rs=std(T) Infinity Norm (MAX) 87.94 86.41 19.72

Biomedical Dataset

Rs=std(T)/2 Euclidean 48.30 40.51 272.9

Rs=std(T)/2 Manhattan 48.84 40.48 235.84

Rs=std(T)/4 Partial Euclidean (Window) 51.12 50.43 123.74

Rs=std(T)/2 3-Norm 54.20 49.42 328.06

Rs=std(T)/2 Infinity Norm (MAX) 69.08 51.62 506.45

BUPA Dataset

Rs=0.025 Euclidean 63.77 50.75 831.95

Rs=0.025 Manhattan 65.32 50.54 829.14

Rs=0.001 Partial Euclidean (Window) 72.05 49.53 503.66

Rs=0.025 3-Norm 64.48 50.91 864.13

Rs=0.05 Infinity Norm (MAX) 66.68 50.47 927.99

Table 5.10: FOM Final Results for Modified V-Detector Implementation

Radius Distance Metric Total FOM 50% FOM D #

Iris Dataset

Rs=0.1 Euclidean 91.28 86.12 13.07

Rs=0.1 Manhattan 89.85 84.51 11.61

Rs=0.06 Partial Euclidean (Window) 87.89 84.69 8.65

Rs=0.1 3-Norm 91.45 86.63 14.67

Rs=0.2 Infinity Norm (MAX) 89.83 85.49 15.74

Biomedical Dataset

Rs=0.15 Euclidean 25.07 28.56 15.32

Rs=0.15 Manhattan 24.50 26.29 13.56

Rs=0.05 Partial Euclidean (Window) 53.56 45.02 42.3

Rs=0.15 3-Norm 25.28 28.64 17.45

Rs=0.25 Infinity Norm (MAX) 22.19 22.64 18.02

BUPA Dataset

Rs=0.175 Euclidean 12.75 11.04 30.69

Rs=0.2 Manhattan 10.27 10.00 18.88

Rs=0.01 Partial Euclidean (Window) 48.86 39.34 116.13

Rs=0.2 3-Norm 13.04 11.46 34.86

Rs=0.25 Infinity Norm (MAX) 16.31 14.67 53.35

76

The results for each implementation of the V-detector algorithm clearly illustrates

that the modified version outperforms over the original implementation. This comes as

no surprise, considering the modified implementation is an improved design over the

original version. The interesting aspects of the modified V-detector algorithm results

begin to surface when compared to the fixed sized radius results. An overall

improvement in figure of merit scores is displayed by the modified V-detector algorithm

approach. Even more astounding, the improvement in FOM scores results from a

decrease in the average number of detectors generated. Later in this report, a more

concise table presents results from which formal conclusions are derived.

The real-valued negative selection algorithm with proliferating variable detectors

is the final version tested. Similarly to the V-detector algorithm, there are tests for two

separate implementations of the proliferation algorithm. The first method is the original

implementation with three stages of proliferation, and the second version is a modified

and condensed two stage implementation. Tables 5.11 and 5.12 show the final figure of

merit scores for each proliferating algorithm implementation. Again, it is no surprise that

the modified version attains better overall efficiency when compared to the original

implementation.

The last test implemented in this study was a feedforward neural network model

trained with back propagation. It was mentioned previously that the comparison between

the negative selection model and neural network is not ideal. The distinction between the

two models arises in the choice of training data. A negative selection algorithm requires

only self data for training, whereas the neural network requires samples from both self

and non-self. Experimental test results provide the proof to this assumption.

77

Radius Distance Metric Total FOM 50% FOM D #

Iris Dataset

Rs=0.1 Euclidean 89.34 83.69 120.51

Rs=0.1 Manhattan 89.83 83.73 68.68

Rs=0.06 Partial Euclidean (Window) 84.90 82.95 37.82

Rs=0.1 3-Norm 87.72 82.05 166.54

Rs=0.2 Infinity Norm (MAX) 88.69 85.45 179.5

Biomedical Dataset

Rs=0.15 Euclidean 39.33 35.03 457.75

Rs=0.15 Manhattan 56.68 47.40 617.1

Rs=0.05 Partial Euclidean (Window) 36.85 35.96 174.84

Rs=0.15 3-Norm 37.27 33.60 445.21

Rs=0.25 Infinity Norm (MAX) 29.53 27.42 364.95

BUPA Dataset

Rs=0.175 Euclidean 29.22 26.22 623.12

Rs=0.2 Manhattan 45.66 36.55 762.61

Rs=0.01 Partial Euclidean (Window) 44.79 36.94 366.15

Rs=0.2 3-Norm 19.57 18.12 522.93

Rs=0.25 Infinity Norm (MAX) 11.64 10.27 428.32

Table 5.11: FOM Final Results for Original Proliferating Implementation

Radius Distance Metric Total FOM 50% FOM D #

Iris Dataset

Rs=0.1 Euclidean 89.30 86.96 287.34

Rs=0.1 Manhattan 90.86 87.77 110.18

Rs=0.05 Partial Euclidean (Window) 86.06 85.19 41.79

Rs=0.1 3-Norm 87.82 86.60 284.74

Rs=0.1 Infinity Norm (MAX) 85.95 86.06 271.2

Biomedical Dataset

Rs=0.05 Euclidean 59.56 49.32 607.91

Rs=0.05 Manhattan 63.08 48.93 648.01

Rs=0.02 Partial Euclidean (Window) 57.47 50.47 373.86

Rs=0.05 3-Norm 56.65 48.23 593.31

Rs=0.075 Infinity Norm (MAX) 51.26 44.95 537.67

BUPA Dataset

Rs=0.05 Euclidean 62.19 47.33 1264.5

Rs=0.05 Manhattan 62.95 46.04 1249.06

Rs=.0005 Partial Euclidean (Window) 65.82 45.27 514.12

Rs=0.05 3-Norm 59.40 46.15 1442

Rs=0.1 Infinity Norm (MAX) 54.30 45.30 1389.7

Table 5.12: FOM Final Results for Modified Proliferating Implementation

78

 The neural network model is tested for two cases. The first is the case in which

the algorithm is trained with the same data as the negative selection algorithm, while in

the latter case the network is trained with the modified training data presented in Table

5.1. Table 5.13 shows the results from training with only self data using the Iris dataset,

which illustrates how the neural network will fail for this case. Since the network is only

trained with self data, the desired output for all training data is always the same (e.g. „1‟).

Therefore, the network is basically trained to only output a „1‟, and any new unknown

data instance will always be classified as a „1‟. This is why the detection rate is

constantly zero, because all non-self data is consistently classified as self.

FINAL RESULTS Detect Rate (%) False Alarm (%) F.O.M.

Datasets Mean Std. Dev. Mean Std. Dev. (%NS+%S)

Setosa 100% 0 0 0 0 0.00

Versicolor 100% 0 0 0 0 0.00

Virginica 100% 0 0 0 0 0.00

Setosa 50% 0 0 0 0 0.00

Versicolor 50% 0 0 0 0 0.00

Virginica 50% 0 0 0 0 0.00

 Table 5.13: Neural Network Failure Results

 Table 5.14 displays the final results derived from the experimental testing of the

neural network algorithm. The total FOM score represents the average FOM score of all

tests performed for a single dataset. The 50% FOM score is the average of only the tests

performed using the 25% training data, which correspond to training the negative

selection algorithm with only 50% of the self data. The FOM scores utilize the same

nomenclature to aid in the comparison analysis despite differences in the training data

monikers.

79

Dataset Total FOM 50% FOM

Iris Dataset 94.57 93.61

Biomedical Dataset 46.99 46.35

BUPA Dataset 38.51 36.64

Average Results 60.02 58.87

Table 5.14: Final FOM Results for Neural Network Model

The final experimental results for each algorithm implementation are present, but

two more tables are necessary before a the procession of a formal analysis. A complete

summary of the FOM scores for each implementation are consolidated into two distinct

formats. Table 5.15 presents the total FOM scores for each negative selection and neural

network algorithm determined individually by dataset. The average total FOM score is

calculated for all three datasets, as well as a total average score for each algorithm‟s

performance. Table 5.16 maintains the same format, but provides the results for only the

50% FOM scores.

It is now possible to present a formal evaluation of the experimental results. The

overall performance of each algorithm implementation has an assigned score to

determine efficiency. The performance of each distance metric is also associated with a

particular score for each algorithm implementation.

80

Total FOM SCORES IRIS BIO BUPA Avg.

Euclidean 88.24 26.56 23.49 46.10

Manhattan 90.00 32.20 36.43 52.88

Partial Euclidean (Window) 89.04 59.01 74.16 74.07

3-Norm 86.40 26.89 23.22 45.50

Infinity Norm (MAX) 89.16 27.65 24.63 47.15

Constant Radius AVG results 88.57 34.46 36.39 53.14

V-Detector Euclidean 91.28 25.07 12.75 43.03

V-Detector Manhattan 89.85 24.50 10.27 41.54

V-Detector Window 87.89 53.56 48.86 63.44

V-Detector 3-Norm 91.45 25.28 13.04 43.26

V-Detector MAX 89.83 22.19 16.31 42.78

V-Detector AVG results 90.06 30.12 20.25 46.81

Modified V-Detector Euclidean 89.66 48.30 63.77 67.24

Modified V-Detector Manhattan 87.30 48.84 65.32 67.15

Modified V-Detector Window 88.93 51.12 72.05 70.70

Modified V-Detector 3-Norm 89.05 54.20 64.48 69.24

Modified V-Detector MAX 87.94 69.08 66.68 74.57

Modified V-Detector AVG results 88.58 54.31 66.46 69.78

Prolif V-Detector Euclidean 89.34 39.33 29.22 52.63

Prolif V-Detector Manhattan 89.83 56.68 45.66 64.06

Prolif V-Detector Window 84.90 36.85 44.79 55.51

Prolif V-Detector 3-Norm 87.72 37.27 19.57 48.19

Prolif V-Detector MAX 88.69 29.53 11.64 43.29

Prolif V-Detector AVG results 88.10 39.93 30.18 52.73

Modified Prolif V-Detector Euclidean 89.30 59.56 62.19 70.35

Modified Prolif V-Detector Manhattan 90.86 63.08 62.95 72.30

Modified Prolif V-Detector Window 86.06 57.47 65.82 69.78

Modified Prolif V-Detector 3-Norm 87.82 56.65 59.40 67.96

Modified Prolif V-Detector MAX 85.95 51.26 54.30 63.84

Modified Prolif AVG results 88.00 57.60 60.93 68.84

Neural Network 94.57 46.99 38.51 59.89

 Table 5.15: Final Total FOM Experimental Results

81

Total FOM SCORES IRIS BIO BUPA Avg.

Euclidean 84.11 27.93 21.86 44.63

Manhattan 84.44 30.95 32.76 49.38

Partial Euclidean (Window) 80.89 53.32 50.38 61.53

3-Norm 83.76 28.39 21.42 44.52

Infinity Norm (MAX) 81.60 26.64 21.96 43.40

Constant Radius AVG results 82.96 33.45 29.68 48.69

V-Detector Euclidean 86.12 28.56 11.04 41.91

V-Detector Manhattan 84.51 26.29 10.00 40.27

V-Detector Window 84.69 45.02 39.34 56.35

V-Detector 3-Norm 86.63 28.64 11.46 42.24

V-Detector MAX 85.49 22.64 14.67 40.93

V-Detector AVG results 85.49 30.23 17.30 44.34

Modified V-Detector Euclidean 87.97 40.51 50.75 59.74

Modified V-Detector Manhattan 85.63 40.48 50.54 58.88

Modified V-Detector Window 85.02 50.43 49.53 61.66

Modified V-Detector 3-Norm 86.74 49.42 50.91 62.36

Modified V-Detector MAX 86.41 51.62 50.47 62.83

Modified V-Detector AVG results 86.35 46.49 50.44 61.10

Prolif V-Detector Euclidean 83.69 35.03 26.22 48.31

Prolif V-Detector Manhattan 83.73 47.40 36.55 55.89

Prolif V-Detector Window 82.95 35.96 36.94 51.95

Prolif V-Detector 3-Norm 82.05 33.60 18.12 44.59

Prolif V-Detector MAX 85.45 27.42 10.27 41.05

Prolif AVG results 83.57 35.88 25.62 48.36

Modified Prolif V-Detector Euclidean 86.96 49.32 47.33 61.20

Modified Prolif V-Detector Manhattan 87.77 48.93 46.04 60.91

Modified Prolif V-Detector Window 85.19 50.47 45.27 60.39

Modified Prolif V-Detector 3-Norm 86.60 48.23 46.15 60.33

Modified Prolif V-Detector MAX 86.06 44.95 45.30 58.77

Modified Prolif AVG results 86.52 48.38 46.02 60.30

Neural Network 93.61 46.35 36.64 58.87

Table 5.16: Final 50% FOM Experimental Results

82

 The experimental data shows that the modified V-detector algorithm is the best

method for self/nonself discrimination. The total and 50% FOM scores from Tables 5.15

and 5.16 support this claim, but careful review of the results show only marginal

improvements over the modified proliferating V-detector algorithm. The anticipated

argument of these results is with more stages of proliferation and more experimental

testing, the proliferating V-detector algorithm could eventually outperform the standard

V-detector implementation. Despite this argument, other factors contribute to the success

of the V-detector algorithm as the preferred method of implementing a negative selection

algorithm.

 Directing attention to the results provided in Tables 5.10 and 5.12, the FOM

scores are accompanied with the average number of detectors generated for each

algorithm implementation. This is where the V-detector algorithm improves upon the

proliferating V-detector method. In all cases, the V-detector generates far less detectors

than the proliferation version, and still manages to yield higher FOM scores. The

modified proliferating V-detector algorithm only includes two stages, with the intent to

reduce the number of detectors and maintain optimal results. Despite all experimental

efforts, the efficiency of the V-detector algorithm could not be matched by the two stage

proliferating implementation.

Time complexity of each algorithm is another important attribute for measuring

performance. For the BUPA dataset, the modified V-detector algorithms required 5-10

hours of run time to complete 50 trials, while the modified proliferating V-detector

implementation took between 24-48 hours. The extended run time is a direct result of the

greater number of detectors generated for each implementation. The proliferation stages

83

also contribute to this runtime, as each previous detector is given multiple opportunities

to produce offspring, and then each offspring is given the same opportunity in each

successive proliferation stage. If time constraints are not a concern, the proliferating V-

detector algorithm with multiple stages of proliferation may prove to be the better choice

of implementation. For reference, runtimes are based on using a PC with a 2.4MHz Intel

Celeron processor and 512Mb of RAM running Windows XP.

As expected, the negative selection algorithm using fixed-sized detectors was the

least efficient model of the three distinct negative selection algorithms tested. The FOM

scores and required number of detectors combine to prove this algorithm should not be

considered for real-valued negative selection algorithm implementation. The neural

network model outperforms the simple fixed sized detector method, but fails to match the

efficiency of the V-detector and proliferating implementations. To reiterate, the neural

network model is not a perfect comparison model since modifications to the training data

is required. However, the efforts put forth in this study did provide sufficient comparison

conditions, as evident by the neural network‟s overall performance.

 A major focus of this study was the determination of an appropriate distance

metric in the application of a specific real-valued negative selection implementation. The

initial hypothesis was that the partial Euclidean distance metric would produce the best

results. The partial Euclidean distance metric proved to be the most efficient

implementation when using the fixed sized detector algorithm, as it greatly exceeded the

other distance metrics in both total and 50% FOM scores. The explanation of these

results is straightforward; each distance metric implementation required the same fixed

number of total detector, but the partial Euclidean distance metric had a smaller non-self

84

space to cover. Since the partial Euclidean distance metric only calculates distance in

two dimensions, the overall self/non-self space is much smaller than in four or six

dimensions. For this reason, it is expected to outperform alternative distance metric for

every implementation.

 The difference between the fixed sized detector and V-detector algorithms is that

detector count is determined by estimated coverage. This distinction is the reason why

the partial Euclidean failed to remain the most efficient implementation. Since the radius

is variable and detector count is flexible, each distance metric can adapt to its given

self/non-self space, removing the previously stated advantage held by the partial

Euclidean metric. The partial Euclidean distance metric may not be the most efficient,

but it does produce comparable results while producing far less detectors for both the V-

detector and proliferation algorithms. Despite producing fewer detectors, the partial

Euclidean algorithm maintained the disadvantage of having the longest runtime. This

arose from the fact that each distance calculation required several calculations in a lower

dimensional space. For a single distance calculation, 3-5 distances were calculated for a

single self point to a single detector. Multiplied over many self points and detectors, and

compounded with detector to detector distance calculations, resulted in the partial

Euclidean calculation time complexity to increase dramatically (3-5 times longer) over

the single distance calculation requirement of the other distance metrics.

 For the modified V-detector algorithm, the prevailing distance metric with the

highest overall total and 50% FOM scores was the infinite-norm (or MAX) distance

metric. Following closely behind, the 3-norm distance metric had the second highest

50% FOM score, while the partial Euclidean had the second highest total FOM score.

85

The 3-norm is third place in total FOM scores. The conclusion from experimental testing

is that the infinite-norm should be considered as the optimal choice when implementing a

real-valued negative selection V-detector algorithm. The ease of distance calculation

made this the fastest implementation, and combined with the best overall FOM score,

makes this the perfect choice for future V-detector implementations.

 The proliferating V-detector algorithm results did not clearly indicate a preferred

distance implementation. The 50% FOM scores designated the standard Euclidean

distance metric as the most efficient, but only minimally over the Manhattan distance

metric. Conversely, the Manhattan distance metric outperformed the Euclidean for the

total FOM results. With the exception of the infinite-norm, all FOM scores were very

close for the proliferating V-detector algorithm. The only formal conclusions which can

be derived from these results is that either the Euclidean or Manhattan distance metric

should be implemented for the proliferation algorithm, and the infinite-norm should be

avoided.

 It is interesting to note that while the infinite-norm is the preferred choice for the

V-detector algorithm, it is the least acceptable choice for the proliferating

implementation. For the V-detector algorithm, detector generation is the only mechanism

for non-self space coverage and the infinite-norm distance metric produces adequate non-

self coverage. The proliferating V-detector algorithm‟s strength in non-self coverage

derives from its proliferation stages, not detector generation. The infinite-norm fails to

perform adequately when proliferation stages occur. The proliferation of detector

offspring using the infinite-norm is not as productive as other distance implementations.

This may be a result of the offspring generation scheme.

86

Figure 5.12: Offspring Detector Coverage

Detectors only generate offspring parallel and anti-parallel to the detector centers.

Recall the shape of the detector in Figure 3.1. The circular and diamond shape (in two

dimensions) of the Euclidean and Manhattan distance seem to have an advantage over the

more square-shaped infinite and 3-norm distance metrics. Recall, the 3-norm is actually

the second worst implementation for the proliferation algorithm. While these shapes

provide benefits in only detector generation stages, they apparently become a hindrance

during proliferation stages. Figure 5.12 illustrates offspring detector coverage for

different distance metrics. The amount of area not already covered by the parent detector

is greatest for the Euclidean and Manhattan offspring detectors.

87

CHAPTER 6

Conclusions

A formal evaluation of implementing different distance metrics for various real-valued

negative selection algorithms is the purpose of this research. This research focuses on

three existing variations of the real-valued negative selection algorithm, and evaluates

each implementation using five different distance metrics. Distance metrics have been

proven to affect the quality of a negative selection algorithm’s performance, yet no

formal study to date has incorporated real world data and various implementations to

determine which distance metric provides maximum effectiveness based on a figure of

merit.

Experimental findings suggest the V-detector algorithm utilizing the infinite-norm

distance metric is the best performing implementation. It not only results in shorter

execution runtimes, but also produces superior FOM results. If runtimes are not a

concern, the proliferating V-detector algorithm using either Euclidean or Manhattan

distance metrics is also a good alternative option. The negative selection algorithm using

fixed-sized detectors should be avoided, and if implemented; the partial Euclidean

distance metric is the definitive choice for optimal performance.

 A multilayer feedforward neural network algorithm implementation is a basis of

comparison to alternative computational intelligence models. The major discrepancy

between negative selection algorithms and alternative approaches is the method of

88

training. The negative selection algorithm has the applicable advantage of data

discrimination when only large amounts of ‘self’ (normal) samples are available. Most

alternative learning algorithms require training of both normal and abnormal data to

adequately discriminate between the two.

 This study leads to many future research opportunities. More sophisticated

negative selection algorithms are being proposed currently, leading to new prospects in

evaluating distance metric performance. One new method employs both negative and

positive selection mechanisms to improve the correct classification of data by lowering

false alarm rates [20]. The most recent advancement is danger theory, which

incorporates fuzzy rules to further disseminate the classification of self/non-self [1].

Expanding the research to include more datasets is another possibility, extending into

higher dimensional data or more applicable scenarios where most of the data is normal.

A final proposition is testing more distance measures. The concept of partial Euclidean

distance can be expanded to partial Manhattan or partial 3-norm, or the window size can

be extended to include more than two dimensions. This study represents the beginning of

a whole new area of negative selection research.

89

REFERENCES

[1] Aickelin, U., Dasgupta, D., “Artificial Immune Systems Tutorial”, In: Introductory Tutorials
in Optimization, Decision Support and Search Methodology, E. Burke and G. Kendall Ed. New
York: Springer, 2005, pp375-399

[2] Blake, E. K., Merz, C., “UCI Repository of Machine Learning Databases”, Irvine, CA.

University of California, Department of Information and Computer Science, 1998. (Last
accessed Jun 7, 2009)

[3] Das, S., Gui, M., Pahwa, A., “Artificial Immune Systems for Self-Nonself Discrimination:
Application to Anomaly Detection”, Studies in Computational Intelligence (SCI) 116, 2008.
pp229–246

[4] Dasgupta, D., “Advances in Artificial Immune Systems”, IEEE Computational Intelligence
Magazine. November, 2006.

[5] Dasgupta, D., Krishna Kumar, K., Wong, D., Berry, M., “Negative Selection Algorithm for

Aircraft Fault Detection”, 3rd International Conference on Artificial Immune Systems. Catania,

Italy. September, 2004.

[6] De Castro, L., " An Introduction to the Artificial Immune Systems ", presented at
International Conference on Artificial Neural Networks and Genetic Algorithms (ICANNGA),
Prague, CZ, 2001.

[7] De Castro, L., Von Zuben, F., "Artificial Immune Systems: Part I – Basic Theory and
Applications", Tech. Rep. TR-DCA, January, 1999.

[8] De Castro, L., Von Zuben, F., "Artificial Immune Systems: Part II – A Survey of
Applications", Tech. Rep. TR-DCA, February, 2000.

[9] Forrest, S., Perelson, A., Allen, L., R., “Self-nonself discrimination in a computer”, In

Proceedings of the 1994 IEEE Symposium on Research in Security and Privacy, IEEE Computer
Society Press, Los Alamitos, CA. 1994. pp 202–212

[10] Gonzalez, F., Dasgupta, D., “Anomaly Detection Using Real-Valued Negative Selection”,

Journal of Genetic Programming and Evolvable Machines. Volume 4, Issue 4. December, 2003.
pp383-403.

[11] Gonzalez, F., Dasgupta, D., Kozma, R., “Combining Negative Selection and Classification

Techniques for Anomaly Detection”, Volume 1, Congress on Evolutionary Computation.
Honolulu, Hawaii. May, 2002. pp705-710.

90

http://eprints.nottingham.ac.uk/621/

[12] Gonzalez, F., Dasgupta, D., Nino, L. F., “A Randomized Real-Valued Negative Selection
Algorithm”, Second International Conference on Artificial Immune Systems. United Kingdom.
September, 2003.

[13] Haykin, S., “Neural Networks and Learning Machines”, 3rd ed. New Jersey: Pearson
Education, 2009.

[14] Janeway, C., Travers, P., Walport, M., “Immunobiology”, Fifth Ed. New York and London:
Garland Science, 2001.

[15] Ji, Z., “Negative Selection Algorithms: from the Thymus to V-detector”, Ph. D. dissertation,

University of Memphis, Memphis, TN, USA, August 2006.

[16] Ji, Z., Dasgupta, D., “Applicability Issues of the Real-Valued Negative Selection
Algorithms”, Genetic and Evolutionary Computation Conference (GECCO). Seattle, Washington.
July, 2006.

[17] Ji, Z., Dasgupta, D., “Revisiting Negative Selection Algorithms”, Issue 15.2. Evolutionary

Computation Journal. July, 2007.

[18] Ji, Z., Dasgupta, D., “Real-Valued Negative Selection Using Variable-Sized Detectors”,

Genetic and Evolutionary Computation Conference (GECCO). Seattle, Washington. June, 2004.

[19] Ji, Z., Dasgupta, D., " V-Detector: A Negative Selection Algorithm", presented at Computer
Science Research Day, University of Memphis, TN, USA, 2005.

[20] Middlemiss, M., “Positive and Negative Selection in a Multilayer Artificial Immune
System”, Discussion Paper 2006/03. Department of Information Science, University of Otago,
Dunedin, New Zealand, 2006.

[21] Sabo, D., “A Modified Iterative Pruning Algorithm for Neural Network Dimension

Analysis”, M.S. thesis, California Polytechnic State University, San Luis Obispo, CA, USA,

2007.

[22] “Statlib datasets archive”, World Wide Web, http://lib.stat.cmu/datasets. (Last accessed May
12, 2009)

[23] Yang, X.R., Shen, J, Wang R., “Artificial Immune Theory Based Network Intrusion

Detection System and the Algorithms Design”, First International Conference on Machine

Learning and Cybernetics, Beijing, China, November 4-5, 2002

91

APPENDIX A

Additional Data Tables

IRIS DATASET Total Averages 50% Averages

Algorithm Implementation DR (%) FA (%) DR(%) FA (%)

Euclidean 93.07 4.83 93.78 9.67

Manhattan 96.48 6.48 97.39 12.95

Partial Euclidean (Window) 98.07 9.03 98.95 18.07

3-Norm 97.54 8.38 98.36 16.76

Infinity Norm (MAX) 90.94 4.54 92.84 9.08

Constant Radius AVG results 95.22 6.65 96.26 13.31

V-Detector Euclidean 97.18 5.90 97.92 11.80

V-Detector Manhattan 95.80 5.96 96.43 11.91

V-Detector Window 93.86 4.93 94.87 9.85

V-Detector 3-Norm 97.37 5.91 98.45 11.83

V-Detector MAX 95.85 6.02 97.54 12.04

V-Detector AVG results 96.01 5.74 97.04 11.49

Modified V-Detector Euclidean 90.52 3.23 92.08 6.45

Modified V-Detector Manhattan 90.52 3.23 92.08 6.45

Modified V-Detector Window 92.25 4.36 93.41 8.72

Modified V-Detector 3-Norm 92.55 3.50 93.74 7.00

Modified V-Detector MAX 92.14 4.20 94.81 8.40

Modified V-Detector AVG results 91.60 3.70 93.22 7.40

Prolif V-Detector Euclidean 95.92 6.58 96.85 13.16

Prolif V-Detector Manhattan 96.42 6.59 96.91 13.19

Prolif V-Detector Window 88.47 3.57 90.09 7.15

Prolif V-Detector 3-Norm 95.06 5.85 96.72 11.71

Prolif V-Detector MAX 93.00 4.31 94.07 8.63

Prolif AVG results 93.77 5.38 94.93 10.77

Modified Prolif V-Detector Euclidean 93.28 3.98 94.92 7.96

Modified Prolif V-Detector Manhattan 93.96 3.10 93.97 6.20

Modified Prolif V-Detector Window 83.04 1.73 84.37 3.46

Modified Prolif V-Detector 3-Norm 91.56 3.74 94.08 7.48

Modified Prolif V-Detector MAX 88.60 2.65 91.37 5.31

Modified Prolif AVG results 90.09 3.04 91.74 6.08

Table A.1: Iris Averages for Detection & False Alarm Rates

92

BIOMEDICAL DATASET Total Averages 50% Averages

Algorithm Implementation DR (%) FA (%) DR(%) FA (%)

Euclidean 32.30 5.74 39.41 11.48

Manhattan 39.63 7.42 45.80 14.85

Partial Euclidean (Window) 74.54 15.53 84.38 31.06

3-Norm 32.88 6.04 40.38 12.07

Infinity Norm (MAX) 34.51 6.86 40.35 13.71

Constant Radius AVG results 42.77 8.32 50.06 16.63

V-Detector Euclidean 30.06 5.00 38.56 10.00

V-Detector Manhattan 28.96 4.46 35.21 8.92

V-Detector Window 66.71 13.15 71.33 26.31

V-Detector 3-Norm 30.68 5.40 39.43 10.80

V-Detector MAX 28.86 6.70 36.03 13.40

V-Detector AVG results 37.05 6.94 44.11 13.89

Modified V-Detector Euclidean 62.97 14.66 69.83 29.32

Modified V-Detector Manhattan 64.22 15.38 71.24 30.76

Modified V-Detector Window 66.76 15.63 81.70 31.27

Modified V-Detector 3-Norm 71.95 17.74 84.91 35.48

Modified V-Detector MAX 91.10 22.01 95.65 44.02

Modified V-Detector AVG results 71.40 17.08 80.67 34.17

Prolif V-Detector Euclidean 50.55 11.22 57.48 22.44

Prolif V-Detector Manhattan 77.00 17.32 82.04 34.64

Prolif V-Detector Window 46.28 9.43 54.82 18.86

Prolif V-Detector 3-Norm 47.17 9.91 53.42 19.81

Prolif V-Detector MAX 37.23 7.71 42.83 15.41

Prolif AVG results 51.65 11.12 58.12 22.23

Modified Prolif V-Detector Euclidean 75.80 16.24 81.80 32.48

Modified Prolif V-Detector Manhattan 82.52 19.44 87.80 38.88

Modified Prolif V-Detector Window 73.46 16.00 82.45 31.98

Modified Prolif V-Detector 3-Norm 72.03 15.39 79.01 30.78

Modified Prolif V-Detector MAX 65.43 14.17 73.28 28.33

Modified Prolif AVG results 73.85 16.25 80.87 32.49

Table A.2: Biomedical Averages for Detection & False Alarm Rates

93

BUPA DATASET Total Averages 50% Averages

Algorithm Implementation DR (%) FA (%) DR(%) FA (%)

Euclidean 31.12 7.63 37.12 15.26

Manhattan 47.07 10.65 54.05 21.29

Partial Euclidean (Window) 98.77 24.61 99.59 49.21

3-Norm 31.13 7.91 37.24 15.83

Infinity Norm (MAX) 33.34 8.72 39.39 17.43

Constant Radius AVG results 48.29 11.90 53.48 23.80

V-Detector Euclidean 17.00 4.24 19.53 8.48

V-Detector Manhattan 13.50 3.22 16.43 6.44

V-Detector Window 64.90 16.04 71.43 32.09

V-Detector 3-Norm 17.55 4.51 20.49 9.03

V-Detector MAX 21.27 4.96 24.61 9.93

V-Detector AVG results 26.84 6.59 30.50 13.19

Modified V-Detector Euclidean 82.46 18.70 88.14 37.39

Modified V-Detector Manhattan 85.20 19.89 90.03 39.77

Modified V-Detector Window 95.23 23.17 95.87 46.35

Modified V-Detector 3-Norm 83.61 19.12 89.15 38.25

Modified V-Detector MAX 88.28 21.60 93.66 43.20

Modified V-Detector AVG results 86.96 20.50 91.37 40.99

Prolif V-Detector Euclidean 37.93 8.71 43.63 17.41

Prolif V-Detector Manhattan 60.67 15.00 66.57 30.02

Prolif V-Detector Window 59.62 14.83 66.60 29.67

Prolif V-Detector 3-Norm 24.23 4.66 27.44 9.32

Prolif V-Detector MAX 14.75 3.11 16.49 6.22

Prolif AVG results 39.44 9.26 44.15 18.53

Modified Prolif V-Detector Euclidean 81.22 19.03 85.39 38.06

Modified Prolif V-Detector Manhattan 82.30 19.36 84.75 38.71

Modified Prolif V-Detector Window 86.06 20.24 85.75 40.48

Modified Prolif V-Detector 3-Norm 78.35 18.95 84.05 37.90

Modified Prolif V-Detector MAX 71.55 17.25 79.80 34.50

Modified Prolif AVG results 79.90 18.97 83.95 37.93

Table A.3: BUPA Averages for Detection & False Alarm Rates

94

A
pp

en
di

x
B

Sa

m
pl

es
 o

f M
at

la
b

So
ur

ce
 C

od
e

 %
C
o
n
s
t
a
n
t
-
s
i
z
e
d

D
e
t
e
c
t
o
r

A
l
g
o
r
i
t
h
m

f
o
r

N
e
g
a
t
i
v
e

S
e
l
e
c
t
i
o
n

A
r
t
i
f
i
c
i
a
l

I
m
m
u
n
e

S
y
s
t
e
m

u
s
i
n
g

E
u
c
l
i
d
e
a
n

D
i
s
t
a
n
c
e

M
e
t
r
i
c

%
C
u
r
r
e
n
t
l
y

t
r
a
i
n
i
n
g

w
i
t
h

h
a
l
f

o
f

s
e
l
f

d
a
t
a

(
2
5

d
a
t
a

s
e
t
s
)

%
D
a
t
a

S
t
r
u
c
t
u
r
e

f
o
r

F
u
l
l
_
D
a
t
a

(
1
-
5
0
=
S
e
t
o
s
a
,
5
1
-
1
0
0
=
V
e
r
s
i
c
o
l
o
r
,
1
0
1
-
1
5
0
=
V
i
r
g
i
n
i
c
a
)

%
Y
o
u

o
n
l
y

n
e
e
d

t
o

c
h
a
n
g
e

T
=
(
f
l
o
w
e
r

n
a
m
e
)

t
o

t
e
s
t

f
o
r

e
a
c
h

f
l
o
w
e
r
,

T
=
V
i
r
g
i
n
i
c
a
_
H
a
l
f
;

%
I
n
i
t
i
a
l
i
z
e

T
r
a
i
n
i
n
g

S
e
t

(
S
e
l
f

S
e
t
)

f
o
r

i
=
1
:
2
5

T
_
n
o
r
m
(
i
,
1
:
4
)
=
T
(
i
,
1
:
4
)
/
n
o
r
m
(
T
(
i
,
1
:
4
)
)
;

%
N
o
r
m
a
l
i
z
e

T
r
a
i
n
i
n
g

S
e
t

e
n
d

T
=
T
_
n
o
r
m
;

%
S
e
t

T

e
q
u
a
l

t
o

n
o
r
m
a
l
i
z
e
d

v
a
l
u
e
s

s
e
l
f
=
z
e
r
o
s
(
1
,
1
5
0
)
;

%
I
n
i
t
i
a
l
i
z
e

s
e
l
f
=
0
,

u
s
e
d

t
o

c
o
u
n
t

s
u
c
c
e
s
s
f
u
l

S
e
l
f

d
e
t
e
c
t
i
o
n
s

D
=
r
a
n
d
(
1
0
0
0
,
4
)
;

%
G
e
n
e
r
a
t
e
s

1
0
0
0

r
a
n
d
o
m

d
e
t
e
c
t
o
r
s

f
r
o
m

(
0
,
1
)

X
=
F
u
l
l
_
D
a
t
a
;

%
I
n
i
t
i
a
l
i
z
e

F
u
l
l

d
a
t
a

s
e
t

f
o
r

t
e
s
t
i
n
g

(
i
n
c
l
u
d
e
s

t
r
a
i
n
i
n
g

s
e
t
)

f
o
r

i
=
1
:
1
5
0

X
_
n
o
r
m
(
i
,
1
:
4
)
=
X
(
i
,
1
:
4
)
/
n
o
r
m
(
X
(
i
,
1
:
4
)
)
;

%
N
o
r
m
a
l
i
z
e

F
u
l
l

D
a
t
a

S
e
t

e
n
d

X
=
X
_
n
o
r
m
;

%
S
e
t

X

e
q
u
a
l

t
o

n
o
r
m
a
l
i
z
e
d

F
u
l
l

D
a
t
a

S
e
t

r
=
.
1
;

%
D
e
t
e
c
t
o
r

r
a
d
i
u
s

(
O
p
t
i
m
a
l

v
a
l
u
e

d
e
t
e
r
m
i
n
e
d

a
s

0
.
1
)

f
o
r

i
=
1
:
1
0
0
0

d
_
m
i
n
=
i
n
f
;

%
I
n
i
t
i
a
l
i
z
e

m
i
n
i
m
u
m

d
i
s
t
a
n
c
e

t
o

i
n
f
i
n
i
t
e

f
o
r

j
=
1
:
2
5

d
i
s
t
=
(
(
s
u
m
(
(
D
(
i
,
1
:
4
)
-
T
(
j
,
1
:
4
)
)
.
^
2
)
)
/
4
)
.
^
.
5
;

%
f
i
n
d
s

d
i
s
t
a
n
c
e

f
r
o
m

d
e
t
e
c
t
o
r

'
i
'

t
o

e
a
c
h

s
e
l
f

%
s
e
t
(
t
r
a
i
n
i
n
g

s
e
t
)
,

E
u
c
l
i
d
e
a
n

d
i
s
t
a
n
c
e

u
s
e
d

i
f

d
i
s
t
<
=
d
_
m
i
n

%
u
s
e
d

t
o

d
e
t
e
r
m
i
n
e

m
i
n
i
m
u
m

d
i
s
t
a
n
c
e

f
r
o
m

d
e
t
e
c
t
o
r

'
i
'

t
o

a
n
y

s
e
l
f

s
e
t

d
_
m
i
n
=
d
i
s
t
;

%
C
o
m
p
a
r
e
s

e
a
c
h

d
i
s
t
a
n
c
e

c
a
l
c
u
l
a
t
e
d

t
o

m
i
n
i
m
u
m

d
i
s
t
a
n
c
e
,

s
a
v
e
s

m
i
n
i
m
u
m

v
a
l
u
e

C
(
1
,
1
:
4
)
=
T
(
j
,
1
:
4
)
;

%
d
e
t
e
r
m
i
n
e
s

n
e
a
r
e
s
t

s
e
l
f

s
e
t
,

s
a
v
e
s

a
s

'
C
'

e
n
d

e
n
d

a
g
e
=
0
;

%
I
n
i
t
i
a
l
i
z
e

a
g
e

t
o

z
e
r
o

w
h
i
l
e
(
d
_
m
i
n
<
r
)

%
W
h
i
l
e

m
i
n
i
m
u
m

d
i
s
t
a
n
c
e
<
r
a
d
i
u
s
,

m
o
v
e

d
e
t
e
c
t
o
r

o
r

g
e
n
e
r
a
t
e

n
e
w

o
n
e

i
f

a
g
e
>
=
1
5

%
M
a
x

a
g
e

s
e
t

t
o

1
5
,

(
n
u
m
b
e
r

o
f

d
e
t
e
c
t
o
r
s

m
o
v
e
s

b
e
f
o
r
e

g
e
n
e
r
a
t
e

n
e
w

d
e
t
e
c
t
o
r
)

D
(
i
,
1
:
4
)
=
r
a
n
d
(
s
i
z
e
(
D
(
1
,
1
:
4
)
)
)
;

%
i
f

m
a
x

a
g
e

i
s

r
e
a
c
h
e
d
,

g
e
n
e
r
a
t
e

n
e
w

d
e
t
e
c
t
o
r

a
g
e
=
0
;

%
R
e
s
e
t

a
g
e

t
o

z
e
r
o

a
f
t
e
r

n
e
w

d
e
t
e
c
t
o
r

g
e
n
e
r
a
t
i
o
n

95

f
o
r

j
=
1
:
2
5

d
i
s
t
=
(
(
s
u
m
(
(
D
(
i
,
1
:
4
)
-
T
(
j
,
1
:
4
)
)
.
^
2
)
)
/
4
)
.
^
.
5
;

%
E
s
t
a
b
l
i
s
h

n
e
w

m
i
n
i
m
u
m

d
i
s
t
a
n
c
e

f
r
o
m

N
E
W

%
d
e
t
e
c
t
o
r

'
i
'

t
o

e
a
c
h

s
e
l
f

s
e
t
(
t
r
a
i
n
i
n
g

s
e
t
)

i
f

d
i
s
t
<
=
d
_
m
i
n

%
u
s
e
d

t
o

d
e
t
e
r
m
i
n
e

m
i
n
i
m
u
m

d
i
s
t
a
n
c
e

f
r
o
m

N
E
W

d
e
t
e
c
t
o
r

'
i
'

t
o

a
n
y

s
e
l
f

s
e
t

d
_
m
i
n
=
d
i
s
t
;

%
s
a
m
e

a
s

b
e
f
o
r
e

C
(
1
,
1
:
4
)
=
T
(
j
,
1
:
4
)
;

%
s
a
m
e

a
s

b
e
f
o
r
e

e
n
d

e
n
d

e
l
s
e

d
i
r
=
(
s
u
m
(
D
(
i
,
1
:
4
)
-
C
(
1
,
1
:
4
)
)
)
/
(
a
b
s
(
s
u
m
(
D
(
i
,
1
:
4
)
-
C
(
1
,
1
:
4
)
)
)
)
;

%
D
e
t
e
r
m
i
n
e
s

d
i
r
e
c
t
i
o
n

t
o

m
o
v
e

%
d
e
t
e
c
t
o
r

f
r
o
m

n
e
a
r
e
s
t

s
e
l
f

s
e
t
(
e
i
t
h
e
r

1

o
r

-
1
)

a
g
e
=
a
g
e
+
1
;

%
I
n
c
r
e
m
e
n
t

a
g
e

b
y

o
n
e

n
=
.
0
0
5
*
e
x
p
(
-
a
g
e
/
1
5
)
;

%
C
a
l
c
u
l
a
t
e
s

a
m
o
u
n
t

t
o

m
o
v
e

d
e
t
e
c
t
o
r

(
n
=
n
*
e
x
p
(
-
a
g
e
/
t
)

(
n
=
.
0
0
5
,

t
=
1
5
)

D
(
i
,
1
:
4
)
=
D
(
i
,
1
:
4
)
+
(
n
*
d
i
r
)
;

%
m
o
v
e

d
e
t
e
c
t
o
r

(
d
=
d
+
n
*
d
i
r
)

d
_
m
i
n
=
i
n
f
;

%
I
n
i
t
i
a
l
i
z
e

m
i
n
i
m
u
m

d
i
s
t
a
n
c
e

t
o

i
n
f
i
n
i
t
e

f
o
r

j
=
1
:
2
5

d
i
s
t
=
(
(
s
u
m
(
(
D
(
i
,
1
:
4
)
-
T
(
j
,
1
:
4
)
)
.
^
2
)
)
/
4
)
.
^
.
5
;

%
R
e
c
a
l
c
u
l
a
t
e

d
i
s
t
a
n
c
e

f
r
o
m

d
e
t
e
c
t
o
r

'
i
'

t
o

%
e
a
c
h

s
e
l
f

s
e
t

i
f

d
i
s
t
<
=
d
_
m
i
n

%
u
s
e
d

t
o

d
e
t
e
r
m
i
n
e

m
i
n
i
m
u
m

d
i
s
t
a
n
c
e

f
r
o
m

d
e
t
e
c
t
o
r

'
i
'

t
o

a
n
y

s
e
l
f

s
e
t

d
_
m
i
n
=
d
i
s
t
;

%
s
a
m
e

a
s

b
e
f
o
r
e

C
(
1
,
1
:
4
)
=
T
(
j
,
1
:
4
)
;

%
s
a
m
e

a
s

b
e
f
o
r
e

e
n
d

e
n
d

e
n
d

e
n
d

i
f

i
>
1

%
t
e
s
t

d
e
t
e
c
t
o
r

(
e
x
c
l
u
d
i
n
g

1
s
t
)

a
g
a
i
n
s
t

p
r
e
v
i
o
u
s

d
e
t
e
c
t
o
r
s

d
_
m
i
n
=
i
n
f
;

%
I
n
i
t
i
a
l
i
z
e

m
i
n
i
m
u
m

d
i
s
t
a
n
c
e

t
o

i
n
f
i
n
i
t
e

a
g
e
=
0
;

%
I
n
i
t
i
a
l
i
z
e

a
g
e

t
o

z
e
r
o

f
o
r

j
=
1
:
i
-
1

d
i
s
t
=
(
(
s
u
m
(
(
D
(
i
,
1
:
4
)
-
D
(
j
,
1
:
4
)
)
.
^
2
)
)
/
4
)
.
^
.
5
;

%
f
i
n
d
s

d
i
s
t
a
n
c
e

f
r
o
m

d
e
t
e
c
t
o
r

i

t
o

e
a
c
h

p
r
e
v
i
o
u
s

%

d
e
t
e
c
t
o
r

i
f

d
i
s
t
<
=
d
_
m
i
n

%
u
s
e
d

t
o

d
e
t
e
r
m
i
n
e

m
i
n
i
m
u
m

d
i
s
t
a
n
c
e

f
r
o
m

d
e
t
e
c
t
o
r

i

t
o

p
r
e
v
i
o
u
s

d
e
t
e
c
t
o
r

s
e
t

d
_
m
i
n
=
d
i
s
t
;

C
1
(
1
,
1
:
4
)
=
D
(
j
,
1
:
4
)
;

%
S
t
o
r
e
s

n
e
a
r
e
s
t

D
e
t
e
c
t
o
r

S
e
t

t
o

'
C
'

e
n
d

e
n
d

w
h
i
l
e
(
d
_
m
i
n
<
(
.
2
5
*
r
)
)

%
c
h
e
c
k

i
f

d
e
t
e
c
t
o
r

'
i
'

i
s

t
o
o

c
l
o
s
e

t
o

n
e
a
r
e
s
t

d
e
t
e
c
t
o
r

(
a
l
l
o
w
s

7
5
%

o
v
e
r
l
a
p
)

d
i
r
=
(
s
u
m
(
D
(
i
,
1
:
4
)
-
C
1
(
1
,
1
:
4
)
)
)
/
(
a
b
s
(
s
u
m
(
D
(
i
,
1
:
4
)
-
C
1
(
1
,
1
:
4
)
)
)
)
;

%
d
e
t
e
r
m
i
n
e

d
i
r
e
c
t
i
o
n

t
o

m
o
v
e

96

%
d
e
t
e
c
t
o
r

f
r
o
m

n
e
a
r
e
s
t

D
e
t
e
c
t
o
r

(
e
i
t
h
e
r

1

o
r

-
1
)

n
=
.
0
0
5
*
e
x
p
(
-
a
g
e
/
1
5
)
;

%
C
a
l
c
u
l
a
t
e
s

a
m
o
u
n
t

t
o

m
o
v
e

d
e
t
e
c
t
o
r

(
n
=
n
*
e
x
p
(
-
a
g
e
/
t
)

(
n
=
.
0
0
5
,

t
=
1
5
)

D
(
i
,
1
:
4
)
=
D
(
i
,
1
:
4
)
+
(
n
*
d
i
r
)
;

%
m
o
v
e

d
e
t
e
c
t
o
r

(
d
=
d
+
n
*
d
i
r
)

a
g
e
=
a
g
e
+
1
;

%
I
n
c
r
e
m
e
n
t

a
g
e

b
y

o
n
e

d
_
m
i
n
=
i
n
f
;

%
I
n
i
t
i
a
l
i
z
e

m
i
n
i
m
u
m

d
i
s
t
a
n
c
e

t
o

i
n
f
i
n
i
t
e

f
o
r

j
=
1
:
i
-
1

d
i
s
t
=
(
(
s
u
m
(
(
D
(
i
,
1
:
4
)
-
D
(
j
,
1
:
4
)
)
.
^
2
)
)
/
4
)
.
^
.
5
;

%
f
i
n
d
s

d
i
s
t
a
n
c
e

f
r
o
m

d
e
t
e
c
t
o
r

'
i
'

t
o

e
a
c
h

%
p
r
e
v
i
o
u
s

d
e
t
e
c
t
o
r

i
f

d
i
s
t
<
=
d
_
m
i
n

%
u
s
e
d

t
o

d
e
t
e
r
m
i
n
e

m
i
n
i
m
u
m

d
i
s
t
a
n
c
e

f
r
o
m

d
e
t
e
c
t
o
r

'
i
'

t
o

p
r
e
v
i
o
u
s

d
e
t
e
c
t
o
r

d
_
m
i
n
=
d
i
s
t
;

%
s
a
v
e
s

m
i
n
i
m
u
m

v
a
l
u
e

C
1
(
1
,
1
:
4
)
=
D
(
j
,
1
:
4
)
;

%
S
t
o
r
e
s

n
e
a
r
e
s
t

D
e
t
e
c
t
o
r

S
e
t

t
o

'
C
'

e
n
d

e
n
d

e
n
d

e
l
s
e

D
(
i
,
1
:
4
)
=
D
(
i
,
1
:
4
)
;

%
F
i
r
s
t

d
e
t
e
c
t
o
r

r
e
m
a
i
n
s

s
a
m
e
,

n
o

p
r
e
v
i
o
u
s

d
e
t
e
c
t
o
r
s

t
o

c
o
m
p
a
r
e

e
n
d

e
n
d

%
E
N
D

d
e
t
e
c
t
o
r

g
e
n
e
r
a
t
i
o
n

f
o
r

i
=
1
:
1
5
0

%
B
e
g
i
n

t
e
s
t
i
n
g

F
u
l
l
_
d
a
t
a

f
o
r

c
l
a
s
s
i
f
i
c
a
t
i
o
n

d
_
m
i
n
=
i
n
f
;

%
I
n
i
t
i
a
l
i
z
e

m
i
n
i
m
u
m

d
i
s
t
a
n
c
e

t
o

i
n
f
i
n
i
t
e

f
o
r

j
=
1
:
1
0
0
0

d
i
s
t
=
(
(
s
u
m
(
(
X
(
i
,
1
:
4
)
-
D
(
j
,
1
:
4
)
)
.
^
2
)
)
/
4
)
.
^
.
5
;

%
f
i
n
d
s

d
i
s
t
a
n
c
e

f
r
o
m

d
e
t
e
c
t
o
r

'
i
'

t
o

e
a
c
h

%
t
e
s
t

d
a
t
a

s
a
m
p
l
e

i
f

d
i
s
t
<
=
d
_
m
i
n

%
u
s
e
d

t
o

d
e
t
e
r
m
i
n
e

m
i
n
i
m
u
m

d
i
s
t
a
n
c
e

f
r
o
m

d
e
t
e
c
t
o
r

'
i
'

t
o

a
n
y

t
e
s
t

d
a
t
a

s
a
m
p
l
e

d
_
m
i
n
=
d
i
s
t
;

%
S
e
t
s

d
_
m
i
n

t
o

m
i
n
i
m
u
m

d
i
s
t
a
n
c
e

t
o

a
n
y

t
e
s
t

d
a
t
a

e
n
d

e
n
d

i
f

d
_
m
i
n
<
r

%
C
h
e
c
k

i
f

m
i
n
i
m
u
m

d
i
s
t
a
n
c
e

i
s

l
e
s
s

t
h
a
n

r
a
d
i
u
s

(
0
.
1
)

s
e
l
f
(
1
,
i
)
=
0
;

%
I
f

n
o
t
,

s
e
l
f

r
e
m
a
i
n
s

z
e
r
o

(
N
o
n
s
e
l
f
)

e
l
s
e

s
e
l
f
(
1
,
i
)
=
1
;

%
I
f

y
e
s
,

s
e
l
f

s
e
t

t
o

o
n
e

(
S
e
l
f
)

e
n
d

e
n
d

s
e
l
f
=
s
e
l
f
;

%
O
u
t
p
u
t
s

a
r
r
a
y

o
f

c
l
a
s
s
i
f
i
c
a
t
i
o
n
s

(
1
=
s
e
l
f
,

0
=
N
o
n
s
e
l
f
)

T
o
t
a
l
_
S
e
l
f
_
I
n
c
o
r
r
e
c
t
=
5
0
-
s
u
m
(
s
e
l
f
(
1
,
1
0
1
:
1
5
0
)
)
;

%
O
u
t
p
u
t
s

c
o
u
n
t

o
f

t
o
t
a
l

s
e
l
f

c
e
l
l
s

i
d
e
n
t
i
f
i
e
d

I
n
c
o
r
r
e
c
t

T
o
t
a
l
_
N
o
n
s
e
l
f
=
1
0
0
-
s
u
m
(
s
e
l
f
(
1
,
1
:
1
0
0
)
)
;

%
O
u
t
p
u
t
s

c
o
u
n
t

o
f

t
o
t
a
l

N
o
n
s
e
l
f

c
e
l
l
s

i
d
e
n
t
i
f
i
e
d

C
o
r
r
e
c
t
l
y

D
e
t
e
c
t
i
o
n
_
R
a
t
e
=
T
o
t
a
l
_
N
o
n
s
e
l
f
*
1
0
0

%
O
u
t
p
u
t
s

D
e
t
e
c
t
i
o
n

R
a
t
e

a
s

a

p
e
r
c
e
n
t
a
g
e

F
a
l
s
e
_
A
l
a
r
m
=
(
T
o
t
a
l
_
S
e
l
f
_
I
n
c
o
r
r
e
c
t
*
2
)
*
1
0
0

%
O
u
t
p
u
t
s

F
a
l
s
e

A
l
a
r
m

r
a
t
e

a
s

a

p
e
r
c
e
n
t
a
g
e

97

 %
M
o
d
i
f
i
e
d

V
-
D
e
t
e
c
t
o
r

A
l
g
o
r
i
t
h
m

f
o
r

N
e
g
a
t
i
v
e

S
e
l
e
c
t
i
o
n

A
r
t
i
f
i
c
i
a
l

I
m
m
u
n
e

S
y
s
t
e
m

%
T
e
s
t
i
n
g

B
U
P
A

D
a
t
a
:

3
4
5

D
a
t
a

s
e
t
s
,

1
4
5

D
i
s
o
r
d
e
r
,

2
0
0

C
l
e
a
n

%
C
u
r
r
e
n
t
l
y

t
r
a
i
n
i
n
g

w
i
t
h

1
0
0
%

D
a
t
a

a
s

C
l
e
a
n

T
=
0
;

T
=
C
l
e
a
n
;

%
I
n
i
t
i
a
l
i
z
e

T
r
a
i
n
i
n
g

S
e
t

(
S
e
l
f

S
e
t
)

f
o
r

i
=
1
:
2
0
0

T
_
n
o
r
m
(
i
,
1
:
6
)
=
T
(
i
,
1
:
6
)
/
n
o
r
m
(
T
(
i
,
1
:
6
)
)
;

%
N
o
r
m
a
l
i
z
e

T
r
a
i
n
i
n
g

D
a
t
a

e
n
d

T
=
T
_
n
o
r
m
;

%
S
e
t

T
=
N
o
r
m
a
l
i
z
e
d

T
r
a
i
n
i
n
g

D
a
t
a

s
e
l
f
=
z
e
r
o
s
(
1
,
3
4
5
)
;

%
I
n
i
t
i
a
l
i
z
e

s
e
l
f
=
0
,

u
s
e
d

t
o

c
o
u
n
t

s
u
c
c
e
s
s
f
u
l

S
e
l
f

d
e
t
e
c
t
i
o
n
s

F
=
F
u
l
l
_
D
a
t
a
;

%
F
u
l
l

d
a
t
a

s
e
t

f
o
r

t
e
s
t
i
n
g

(
i
n
c
l
u
d
e
s

t
r
a
i
n
i
n
g

s
e
t
)

f
o
r

i
=
1
:
3
4
5

F
_
n
o
r
m
(
i
,
1
:
6
)
=
F
(
i
,
1
:
6
)
/
n
o
r
m
(
F
(
i
,
1
:
6
)
)
;

%
N
o
r
m
a
l
i
z
e

F
u
l
l

D
a
t
a

S
e
t

e
n
d

F
=
F
_
n
o
r
m
;

%
S
e
t

F
=
N
o
r
m
a
l
i
z
e
d

T
e
s
t
i
n
g

D
a
t
a

r
=
.
0
2
5
;

%
S
e
t

S
e
l
f

r
a
d
i
u
s

m
=
0
;

%
I
n
i
t
i
a
l
i
z
e

m
=
0
,

e
s
t
i
m
a
t
e
s

t
o
t
a
l

c
o
v
e
r
a
g
e

o
f

n
o
n
s
e
l
f

s
p
a
c
e

m
=
1
/
(
1
-
c
)

c
=
%
c
o
v
e
r
a
g
e

(
9
9
.
9
8
%

c
u
r
r
e
n
t
l
y
)

k
=
1
;

%
I
n
i
t
i
a
l
i
z
e

k
=
1
,

d
e
t
e
r
m
i
n
e
s

d
e
t
e
c
t
o
r

c
o
u
n
t
/
p
l
a
c
e
m
e
n
t

w
h
i
l
e

(
m
<
5
0
0
0
)
&
&
(
k
<
1
0
0
0
)

%
g
e
n
e
r
a
t
e

d
e
t
e
c
t
o
r

u
n
t
i
l

e
i
t
h
e
r

t
h
r
e
s
h
o
l
d

i
s

a
c
h
i
e
v
e
d

x
=
r
a
n
d
(
1
,
6
)
;

%
g
e
n
e
r
a
t
e

r
a
n
d
o
m

d
e
t
e
c
t
o
r

c
a
n
d
i
d
a
t
e

d
_
m
i
n
=
i
n
f
;

%
I
n
i
t
i
a
l
i
z
e

d
m
i
n

t
o

i
n
f
i
n
i
t
e

f
o
r

i
=
1
:
2
0
0

d
i
s
t
=
(
s
u
m
(
a
b
s
(
T
(
i
,
1
:
6
)
-
x
(
1
,
1
:
6
)
)
)
)
/
6
;

%
c
a
l
c
u
l
a
t
e
s

m
i
n

d
i
s
t
a
n
c
e

t
o

s
e
l
f

f
r
o
m

d
e
t
e
c
t
o
r

%
(
M
a
n
h
a
t
t
a
n

m
e
t
r
i
c
)

i
f

d
i
s
t
<
=
d
_
m
i
n

d
_
m
i
n
=
d
i
s
t
;

%
S
t
o
r
e

m
i
n
i
m
u
m

d
i
s
t
a
n
c
e

t
o

d
m
i
n

e
n
d

e
n
d

i
f

d
_
m
i
n
<
r

%
i
f

m
i
n

d
i
s
t
a
n
c
e

l
e
s
s

t
h
a
n

s
e
l
f

t
h
r
e
s
h
o
l
d

(
r
)
,

g
e
n
e
r
a
t
e

n
e
w

d
e
t
e
c
t
o
r

c
o
n
t
i
n
u
e

e
l
s
e

i
f

(
k
=
=
1
)

%
i
f

1
s
t

d
e
t
e
c
t
o
r
,

s
t
o
r
e

d
e
t
e
c
t
o
r

D
(
k
,
1
:
6
)
=
x
;

r
d
(
k
,
1
)
=
(
d
_
m
i
n
*
.
9
9
)
;

%
s
t
o
r
e

r
a
d
i
u
s

o
f

d
e
t
e
c
t
o
r

a
s

d
m
i
n
*
.
9
9

k
=
k
+
1
;

%
i
n
c
r
e
m
e
n
t

d
e
t
e
c
t
o
r

c
o
u
n
t
e
r

e
l
s
e

p
=
0
;

%
i
n
i
t
i
a
l
i
z
e

p
=
0
,

u
s
e
d

l
a
t
e
r

f
o
r

j
=
1
:
k
-
1

98

d
i
s
t
=
(
s
u
m
(
a
b
s
(
D
(
j
,
1
:
6
)
-
x
(
1
,
1
:
6
)
)
)
)
/
6
;

%
c
a
l
c
u
l
a
t
e

m
i
n

d
i
s
t
a
n
c
e

t
o

p
r
e
v
i
o
u
s

s
t
o
r
e
d

d
e
t
e
c
t
o
r
s

%
(
E
u
c
l
i
d
e
a
n

m
e
t
r
i
c
)

i
f

d
i
s
t
<
(
r
d
(
j
,
1
)
*
.
7
5
)

%
i
f

n
e
w

d
e
t
e
c
t
o
r

d
i
s
t
a
n
c
e

l
e
s
s

t
h
a
n

p
r
e
v
i
o
u
s

d
e
t
e
c
t
o
r

r
a
d
i
u
s
,

%
g
e
n
e
r
a
t
e

n
e
w

d
e
t
e
c
t
o
r
,

a
l
l
o
w
s

o
v
e
r
l
a
p

o
f

2
5
%

b
r
e
a
k

e
l
s
e

p
=
p
+
1
;

%
c
o
u
n
t
s

i
f

n
e
w

d
e
t
e
c
t
o
r

n
o
t

d
e
t
e
c
t
e
d

b
y

p
r
e
v
i
o
u
s

d
e
t
e
c
t
o
r
s

e
n
d

e
n
d

i
f

(
p
=
=
(
k
-
1
)
)

%
i
f

n
e
w

d
e
t
e
c
t
o
r

n
o
t

d
e
t
e
c
t
e
d

b
y

a
l
l

p
r
e
v
i
o
u
s

d
e
t
e
c
t
o
r
s

D
(
k
,
1
:
6
)
=
x
;

%
s
t
o
r
e

n
e
w

d
e
t
e
c
t
o
r

r
d
(
k
,
1
)
=
(
d
_
m
i
n
*
.
9
9
)
;

%
s
t
o
r
e

n
e
w

d
e
t
e
c
t
o
r

r
a
d
i
u
s

a
s

d
m
i
n
*
.
9
9

k
=
k
+
1
;

%
i
n
c
r
e
m
e
n
t

d
e
t
e
c
t
o
r

c
o
u
n
t

m
=
0
;

%
R
e
s
e
t

d
e
t
e
c
t
o
r

c
o
v
e
r
a
g
e

c
o
u
n
t
e
r

e
l
s
e

m
=
m
+
1
;

%
I
f

n
e
w

d
e
t
e
c
t
o
r

i
s

a
l
r
e
a
d
y

c
o
v
e
r
e
d
,

i
n
c
r
e
m
e
n
t

c
o
v
e
r
a
g
e

c
o
u
n
t
e
r

e
n
d

e
n
d

e
n
d

e
n
d

%
E
n
d

D
e
t
e
c
t
o
r

G
e
n
e
r
a
t
i
o
n

p
h
a
s
e

f
o
r

i
=
1
:
3
4
5

%
B
e
g
i
n

t
e
s
t
i
n
g

F
u
l
l
_
d
a
t
a

f
o
r

c
l
a
s
s
i
f
i
c
a
t
i
o
n

f
o
r

j
=
1
:
k
-
1

d
i
s
t
=
(
s
u
m
(
a
b
s
(
F
(
i
,
1
:
6
)
-
D
(
j
,
1
:
6
)
)
)
)
/
6
;

%
f
i
n
d
s

d
i
s
t
a
n
c
e

f
r
o
m

d
e
t
e
c
t
o
r

'
i
'

t
o

e
a
c
h

t
e
s
t

d
a
t
a

s
a
m
p
l
e

i
f

d
i
s
t
<
(
r
d
(
j
,
1
)
)

%
C
h
e
c
k

i
f

d
i
s
t
a
n
c
e

i
s

l
e
s
s

t
h
a
n

d
e
t
e
c
t
o
r

r
a
d
i
u
s

s
e
l
f
(
1
,
i
)
=
0
;

%
I
f

y
e
s
,

s
e
t

s
e
l
f
=
0

(
N
o
n
s
e
l
f
)

b
r
e
a
k

e
l
s
e

s
e
l
f
(
1
,
i
)
=
1
;

%
I
f

n
o
,

s
e
t

s
e
l
f

t
o

o
n
e

(
S
e
l
f
)

e
n
d

e
n
d

e
n
d

s
e
l
f
=
s
e
l
f
;

%
O
u
t
p
u
t
s

a
r
r
a
y

o
f

c
l
a
s
s
i
f
i
c
a
t
i
o
n
s

(
1
=
s
e
l
f
,

0
=
N
o
n
s
e
l
f
)

T
o
t
a
l
_
S
e
l
f
_
I
n
c
o
r
r
e
c
t
=
2
0
0
-
s
u
m
(
s
e
l
f
(
1
,
1
4
6
:
3
4
5
)
)
;

%
O
u
t
p
u
t
s

c
o
u
n
t

o
f

t
o
t
a
l

s
e
l
f

c
e
l
l
s

i
d
e
n
t
i
f
i
e
d

I
n
c
o
r
r
e
c
t

T
o
t
a
l
_
N
o
n
s
e
l
f
=
1
4
5
-
s
u
m
(
s
e
l
f
(
1
,
1
:
1
4
5
)
)
;

%
O
u
t
p
u
t
s

c
o
u
n
t

o
f

t
o
t
a
l

N
o
n
s
e
l
f

c
e
l
l
s

i
d
e
n
t
i
f
i
e
d

C
o
r
r
e
c
t
l
y

D
e
t
e
c
t
i
o
n
_
R
a
t
e
=
(
T
o
t
a
l
_
N
o
n
s
e
l
f
/
1
4
5
)
*
1
0
0

%
C
a
l
c
u
l
a
t
e

D
e
t
e
c
t
i
o
n

R
a
t
e

p
e
r
c
e
n
t
a
g
e

F
a
l
s
e
_
A
l
a
r
m
=
(
T
o
t
a
l
_
S
e
l
f
_
I
n
c
o
r
r
e
c
t
/
2
0
0
)
*
1
0
0

%
C
a
l
c
u
l
a
t
e
s

F
a
l
s
e

A
l
a
r
m

R
a
t
e

p
e
r
c
e
n
t
a
g
e

k
=
k

%
O
u
t
p
u
t
s

D
e
t
e
c
t
o
r

c
o
u
n
t

%
P
r
o
l
i
f
e
r
a
t
i
n
g

V
-
D
e
t
e
c
t
o
r

A
l
g
o
r
i
t
h
m

f
o
r

N
e
g
a
t
i
v
e

S
e
l
e
c
t
i
o
n

A
r
t
i
f
i
c
i
a
l

99

 %
I
m
m
u
n
e

S
y
s
t
e
m

(
2

S
t
a
g
e
s
)

%
C
u
r
r
e
n
t
l
y

t
r
a
i
n
i
n
g

w
i
t
h

a
l
l

s
e
l
f

d
a
t
a

(
5
0

d
a
t
a

s
e
t
s
)

%
D
a
t
a

S
t
r
u
c
t
u
r
e

f
o
r

F
u
l
l
_
D
a
t
a

(
1
-
5
0
=
S
e
t
o
s
a
,
5
1
-
1
0
0
=
V
e
r
s
i
c
o
l
o
r
,
1
0
1
-
1
5
0
=
V
i
r
g
i
n
i
c
a
)

%
Y
o
u

o
n
l
y

n
e
e
d

t
o

c
h
a
n
g
e

T
=
(
f
l
o
w
e
r

n
a
m
e
)

t
o

t
e
s
t

f
o
r

e
a
c
h

f
l
o
w
e
r
,

T
=
S
e
t
o
s
a
;

%
I
n
i
t
i
a
l
i
z
e

T
r
a
i
n
i
n
g

S
e
t

(
S
e
l
f

S
e
t
)

f
o
r

i
=
1
:
5
0

T
_
n
o
r
m
(
i
,
1
:
4
)
=
T
(
i
,
1
:
4
)
/
n
o
r
m
(
T
(
i
,
1
:
4
)
)
;

%
N
o
r
m
a
l
i
z
e

T
r
a
i
n
i
n
g

D
a
t
a

e
n
d

T
=
T
_
n
o
r
m
;

%
S
e
t

T
=
N
o
r
m
a
l
i
z
e
d

T
r
a
i
n
i
n
g

D
a
t
a

s
e
l
f
=
z
e
r
o
s
(
1
,
1
5
0
)
;

%
I
n
i
t
i
a
l
i
z
e

s
e
l
f
=
0
,

u
s
e
d

t
o

c
o
u
n
t

s
u
c
c
e
s
s
f
u
l

S
e
l
f

d
e
t
e
c
t
i
o
n
s

F
=
F
u
l
l
_
D
a
t
a
;

%
F
u
l
l

d
a
t
a

s
e
t

f
o
r

t
e
s
t
i
n
g

(
i
n
c
l
u
d
e
s

t
r
a
i
n
i
n
g

s
e
t
)

f
o
r

i
=
1
:
1
5
0

F
_
n
o
r
m
(
i
,
1
:
4
)
=
F
(
i
,
1
:
4
)
/
n
o
r
m
(
F
(
i
,
1
:
4
)
)
;

%
N
o
r
m
a
l
i
z
e

F
u
l
l

D
a
t
a

S
e
t

e
n
d

F
=
F
_
n
o
r
m
;

%
S
e
t

F
=
N
o
r
m
a
l
i
z
e
d

T
e
s
t
i
n
g

D
a
t
a

r
=
0
.
1
;

%
S
e
l
f

r
a
d
i
u
s

(
O
p
t
i
m
a
l

v
a
l
u
e

d
e
t
e
r
m
i
n
e
d

a
s

0
.
1
)

m
=
0
;

%
I
n
i
t
i
a
l
i
z
e

m
=
0
,

e
s
t
i
m
a
t
e
s

t
o
t
a
l

c
o
v
e
r
a
g
e

o
f

n
o
n
s
e
l
f

s
p
a
c
e

m
=
1
/
(
1
-
c
)

c
=
%
c
o
v
e
r
a
g
e

(
9
9
.
9
8
%

c
u
r
r
e
n
t
l
y
)

k
=
1
;

%
I
n
i
t
i
a
l
i
z
e

k
=
1
,

d
e
t
e
r
m
i
n
e
s

d
e
t
e
c
t
o
r

c
o
u
n
t
/
p
l
a
c
e
m
e
n
t

D
=
0
;

%
I
n
i
t
i
a
l
i
z
e

D
e
t
e
c
t
o
r

v
a
l
u
e

t
o

z
e
r
o

r
d
=
0
;

%
I
n
i
t
i
a
l
i
z
e

D
e
t
e
c
t
o
r

r
a
d
i
u
s

t
o

z
e
r
o

w
h
i
l
e

(
m
<
5
0
0
0
)
&
&
(
k
<
2
0
0
)

%
g
e
n
e
r
a
t
e

d
e
t
e
c
t
o
r

u
n
t
i
l

e
i
t
h
e
r

t
h
r
e
s
h
o
l
d

i
s

a
c
h
i
e
v
e
d

x
=
r
a
n
d
(
1
,
4
)
;

%
g
e
n
e
r
a
t
e

r
a
n
d
o
m

d
e
t
e
c
t
o
r

c
a
n
d
i
d
a
t
e

d
_
m
i
n
=
i
n
f
;

%
I
n
i
t
i
a
l
i
z
e

d
m
i
n

t
o

i
n
f
i
n
i
t
e

f
o
r

i
=
1
:
5
0

d
i
s
t
=
(
s
u
m
(
(
T
(
i
,
1
:
4
)
-
x
(
1
,
1
:
4
)
)
.
^
2
)
)
.
^
.
5
;

%
c
a
l
c
u
l
a
t
e
s

m
i
n

d
i
s
t
a
n
c
e

t
o

s
e
l
f

f
r
o
m

d
e
t
e
c
t
o
r

%
(
E
u
c
l
i
d
e
a
n

m
e
t
r
i
c
)

i
f

d
i
s
t
<
=
d
_
m
i
n

d
_
m
i
n
=
d
i
s
t
;

%
S
t
o
r
e

m
i
n
i
m
u
m

d
i
s
t
a
n
c
e

t
o

d
m
i
n

e
n
d

e
n
d

i
f

d
_
m
i
n
<
r

%
i
f

m
i
n

d
i
s
t
a
n
c
e

l
e
s
s

t
h
a
n

s
e
l
f

t
h
r
e
s
h
o
l
d

(
r
)
,

g
e
n
e
r
a
t
e

n
e
w

d
e
t
e
c
t
o
r

c
o
n
t
i
n
u
e

e
l
s
e

i
f

(
k
=
=
1
)

%
i
f

1
s
t

d
e
t
e
c
t
o
r
,

s
t
o
r
e

d
e
t
e
c
t
o
r

D
(
k
,
1
:
4
)
=
x
;

r
d
(
k
,
1
)
=
(
d
_
m
i
n
-
(
r
)
)
;

%
s
t
o
r
e

r
a
d
i
u
s

o
f

d
e
t
e
c
t
o
r

a
s

(
d
m
i
n
-
r
)

k
=
k
+
1
;

%
i
n
c
r
e
m
e
n
t

d
e
t
e
c
t
o
r

c
o
u
n
t
e
r

e
l
s
e

100

p
=
0
;

%
i
n
i
t
i
a
l
i
z
e

p
=
0
,

u
s
e
d

l
a
t
e
r

f
o
r

j
=
1
:
k
-
1

d
i
s
t
=
(
s
u
m
(
(
D
(
j
,
1
:
4
)
-
x
(
1
,
1
:
4
)
)
.
^
2
)
)
.
^
.
5
;

%
c
a
l
c
u
l
a
t
e

m
i
n

d
i
s
t
a
n
c
e

t
o

p
r
e
v
i
o
u
s

s
t
o
r
e
d

%
d
e
t
e
c
t
o
r
s

(
E
u
c
l
i
d
e
a
n

m
e
t
r
i
c
)

i
f

d
i
s
t
<
r
d
(
j
,
1
)

%
i
f

n
e
w

d
e
t
e
c
t
o
r

d
i
s
t
a
n
c
e

l
e
s
s

t
h
a
n

p
r
e
v
i
o
u
s

d
e
t
e
c
t
o
r

r
a
d
i
u
s
,

%
g
e
n
e
r
a
t
e

n
e
w

d
e
t
e
c
t
o
r

b
r
e
a
k

e
l
s
e

p
=
p
+
1
;

%
c
o
u
n
t
s

i
f

n
e
w

d
e
t
e
c
t
o
r

n
o
t

d
e
t
e
c
t
e
d

b
y

p
r
e
v
i
o
u
s

d
e
t
e
c
t
o
r
s

e
n
d

e
n
d

i
f

(
p
=
=
(
k
-
1
)
)

%
i
f

n
e
w

d
e
t
e
c
t
o
r

n
o
t

d
e
t
e
c
t
e
d

b
y

a
l
l

p
r
e
v
i
o
u
s

d
e
t
e
c
t
o
r
s

D
(
k
,
1
:
4
)
=
x
;

%
s
t
o
r
e

n
e
w

d
e
t
e
c
t
o
r

r
d
(
k
,
1
)
=
(
d
_
m
i
n
-
(
r
)
)
;

%
s
t
o
r
e

n
e
w

d
e
t
e
c
t
o
r

r
a
d
i
u
s

a
s

(
d
m
i
n
-
r
)

k
=
k
+
1
;

%
i
n
c
r
e
m
e
n
t

d
e
t
e
c
t
o
r

c
o
u
n
t

m
=
0
;

%
R
e
s
e
t

d
e
t
e
c
t
o
r

c
o
v
e
r
a
g
e

c
o
u
n
t
e
r

e
l
s
e

m
=
m
+
1
;

%
I
f

n
e
w

d
e
t
e
c
t
o
r

i
s

a
l
r
e
a
d
y

c
o
v
e
r
e
d
,

i
n
c
r
e
m
e
n
t

c
o
v
e
r
a
g
e

c
o
u
n
t
e
r

e
n
d

e
n
d

e
n
d

e
n
d

%
E
n
d

D
e
t
e
c
t
o
r

G
e
n
e
r
a
t
i
o
n

p
h
a
s
e

o
f
f
=
0
;

%
I
n
i
t
i
a
l
i
z
e

o
f
f
s
p
r
i
n
g

c
o
u
n
t
e
r

(
u
s
e
d

f
o
r

i
n
f
o
r
m
a
t
i
o
n
a
l

p
u
r
p
o
s
e
s

o
n
l
y
)

k
2
=
k
;

%
I
n
i
t
i
a
l
i
z
e

o
f
f
s
p
r
i
n
g

i
t
e
r
a
t
i
o
n

c
o
u
n
t

(
p
r
e
v
e
n
t
s

o
f
f
s
p
r
i
n
g

f
r
o
m

p
r
o
l
i
f
e
r
a
t
i
n
g

u
n
t
i
l

n
e
x
t

s
t
a
g
e
)

f
o
r

i
=
1
:
k
-
1

%
B
e
g
i
n

1
s
t

P
r
o
l
i
f
e
r
a
t
i
o
n

S
t
a
g
e

p
=
0
;

x
=
D
(
i
,
1
:
4
)
+
U
1
*
r
d
(
i
,
1
)
;

%
G
e
n
e
r
a
t
e

o
f
f
s
p
r
i
n
g

d
e
t
e
c
t
o
r

a
l
o
n
g

c
i
r
c
u
m
f
e
r
e
n
c
e

o
f

p
r
e
v
.

s
t
o
r
e
d

%
d
e
t
e
c
t
o
r
,

U
1
=
[
0
,
0
,
0
,
1
]

f
o
r

j
=
1
:
k
2
-
1

d
i
s
t
=
(
s
u
m
(
(
D
(
j
,
1
:
4
)
-
x
(
1
,
1
:
4
)
)
.
^
2
)
)
.
^
.
5
;

%
c
a
l
c
u
l
a
t
e

m
i
n

d
i
s
t
a
n
c
e

f
r
o
m

o
f
f
s
p
r
i
n
g

t
o

p
r
e
v
i
o
u
s

s
t
o
r
e
d

%
d
e
t
e
c
t
o
r
s

(
E
u
c
l
i
d
e
a
n

m
e
t
r
i
c
)

i
f

d
i
s
t
<
r
d
(
j
,
1
)

%
i
f

o
f
f
s
p
r
i
n
g

d
e
t
e
c
t
o
r

d
i
s
t
a
n
c
e

l
e
s
s

t
h
a
n

p
r
e
v
i
o
u
s

d
e
t
e
c
t
o
r

r
a
d
i
u
s
,

%
g
e
n
e
r
a
t
e

n
e
w

d
e
t
e
c
t
o
r

b
r
e
a
k

e
l
s
e

p
=
p
+
1
;

%
c
o
u
n
t
s

i
f

o
f
f
s
p
r
i
n
g

d
e
t
e
c
t
o
r

n
o
t

d
e
t
e
c
t
e
d

b
y

p
r
e
v
i
o
u
s

d
e
t
e
c
t
o
r
s

e
n
d

e
n
d

101

i
f

(
p
=
=
(
k
2
-
1
)
)

%
i
f

o
f
f
s
p
r
i
n
g

d
e
t
e
c
t
o
r

n
o
t

d
e
t
e
c
t
e
d

b
y

a
l
l

p
r
e
v
i
o
u
s

d
e
t
e
c
t
o
r
s

d
_
m
i
n
=
i
n
f
;

f
o
r

l
=
1
:
5
0

d
i
s
t
=
(
s
u
m
(
(
T
(
l
,
1
:
4
)
-
x
(
1
,
1
:
4
)
)
.
^
2
)
)
.
^
.
5
;

%
c
a
l
c
u
l
a
t
e
s

m
i
n

d
i
s
t
a
n
c
e

f
r
o
m

o
f
f
s
p
r
i
n
g

d
e
t
e
c
t
o
r

t
o

s
e
l
f

%
(
E
u
c
l
i
d
e
a
n

m
e
t
r
i
c
)

i
f

d
i
s
t
<
=
d
_
m
i
n

d
_
m
i
n
=
d
i
s
t
;

%
S
t
o
r
e

m
i
n
i
m
u
m

d
i
s
t
a
n
c
e

t
o

d
m
i
n

e
n
d

e
n
d

D
(
k
2
,
1
:
4
)
=
x
;

%
s
t
o
r
e

o
f
f
s
p
r
i
n
g

d
e
t
e
c
t
o
r

r
d
(
k
2
,
1
)
=
(
d
_
m
i
n
-
(
.
5
*
r
)
)
;

%
s
t
o
r
e

o
f
f
s
p
r
i
n
g

d
e
t
e
c
t
o
r

r
a
d
i
u
s

a
s

(
d
m
i
n
-
.
5
*
r
)

k
2
=
k
2
+
1
;

%
i
n
c
r
e
m
e
n
t

d
e
t
e
c
t
o
r

c
o
u
n
t

o
f
f
=
o
f
f
+
1
;

%
i
n
c
r
e
m
e
n
t

o
f
f
s
p
r
i
n
g

c
o
u
n
t
e
r

e
n
d

e
n
d

f
o
r

i
=
1
:
k
-
1

p
=
0
;

x
=
D
(
i
,
1
:
4
)
+
U
2
*
r
d
(
i
,
1
)
;

%
G
e
n
e
r
a
t
e

o
f
f
s
p
r
i
n
g

d
e
t
e
c
t
o
r

a
l
o
n
g

c
i
r
c
u
m
f
e
r
e
n
c
e

o
f

p
r
e
v
.

s
t
o
r
e
d

d
e
t
e
c
t
o
r
,

%
U
2
=
[
0
,
0
,
0
,
-
1
]

f
o
r

j
=
1
:
k
2
-
1

d
i
s
t
=
(
s
u
m
(
(
D
(
j
,
1
:
4
)
-
x
(
1
,
1
:
4
)
)
.
^
2
)
)
.
^
.
5
;

%
c
a
l
c
u
l
a
t
e

m
i
n

d
i
s
t
a
n
c
e

f
r
o
m

o
f
f
s
p
r
i
n
g

t
o

p
r
e
v
i
o
u
s

s
t
o
r
e
d

%
d
e
t
e
c
t
o
r
s

(
E
u
c
l
i
d
e
a
n

m
e
t
r
i
c
)

i
f

d
i
s
t
<
r
d
(
j
,
1
)

%
i
f

o
f
f
s
p
r
i
n
g

d
e
t
e
c
t
o
r

d
i
s
t
a
n
c
e

l
e
s
s

t
h
a
n

p
r
e
v
i
o
u
s

%
d
e
t
e
c
t
o
r

r
a
d
i
u
s
,

g
e
n
e
r
a
t
e

n
e
w

d
e
t
e
c
t
o
r

b
r
e
a
k

e
l
s
e

p
=
p
+
1
;

%
c
o
u
n
t
s

i
f

o
f
f
s
p
r
i
n
g

d
e
t
e
c
t
o
r

n
o
t

d
e
t
e
c
t
e
d

b
y

p
r
e
v
i
o
u
s

d
e
t
e
c
t
o
r
s

e
n
d

e
n
d

i
f

(
p
=
=
(
k
2
-
1
)
)

%
i
f

o
f
f
s
p
r
i
n
g

d
e
t
e
c
t
o
r

n
o
t

d
e
t
e
c
t
e
d

b
y

a
l
l

p
r
e
v
i
o
u
s

d
e
t
e
c
t
o
r
s

d
_
m
i
n
=
i
n
f
;

f
o
r

l
=
1
:
5
0

d
i
s
t
=
(
s
u
m
(
(
T
(
l
,
1
:
4
)
-
x
(
1
,
1
:
4
)
)
.
^
2
)
)
.
^
.
5
;

%
c
a
l
c
u
l
a
t
e
s

m
i
n

d
i
s
t
a
n
c
e

f
r
o
m

o
f
f
s
p
r
i
n
g

d
e
t
e
c
t
o
r

t
o

s
e
l
f

%
(
E
u
c
l
i
d
e
a
n

m
e
t
r
i
c
)

i
f

d
i
s
t
<
=
d
_
m
i
n

d
_
m
i
n
=
d
i
s
t
;

%
S
t
o
r
e

m
i
n
i
m
u
m

d
i
s
t
a
n
c
e

t
o

d
m
i
n

e
n
d

e
n
d

102

D
(
k
2
,
1
:
4
)
=
x
;

%
s
t
o
r
e

o
f
f
s
p
r
i
n
g

d
e
t
e
c
t
o
r

r
d
(
k
2
,
1
)
=
(
d
_
m
i
n
-
(
.
5
*
r
)
)
;

%
s
t
o
r
e

o
f
f
s
p
r
i
n
g

d
e
t
e
c
t
o
r

r
a
d
i
u
s

a
s

(
d
m
i
n
-
.
5
*
r
)

k
2
=
k
2
+
1
;

%
i
n
c
r
e
m
e
n
t

d
e
t
e
c
t
o
r

c
o
u
n
t

o
f
f
=
o
f
f
+
1
;

%
i
n
c
r
e
m
e
n
t

o
f
f
s
p
r
i
n
g

c
o
u
n
t
e
r

(
o
n
l
y

f
o
r

i
n
f
o
r
m
a
t
i
o
n
a
l

p
u
r
p
o
s
e
s
)

e
n
d

e
n
d

f
o
r

i
=
1
:
k
-
1

p
=
0
;

x
=
D
(
i
,
1
:
4
)
+
U
3
*
r
d
(
i
,
1
)
;

%
G
e
n
e
r
a
t
e

o
f
f
s
p
r
i
n
g

d
e
t
e
c
t
o
r

a
l
o
n
g

c
i
r
c
u
m
f
e
r
e
n
c
e

o
f

p
r
e
v
.

s
t
o
r
e
d

d
e
t
e
c
t
o
r
,

%
U
3
=
[
0
,
0
,
1
,
0
]

(
A
l
g
o
r
i
t
h
m

r
e
p
e
a
t
s

a
s

s
u
c
h

f
o
r

U
4
=
[
0
,
0
,
-
1
,
0
]
,

U
5
=
[
0
,
1
,
0
,
0
]
,

U
6
=
[
0
,
-
1
,
0
,
0
]
,

U
7
=
[
1
,
0
,
0
,
0
]
,

U
8
=
[
-
1
,
0
,
0
,
0
]
)

%
E
n
d

1
s
t

P
r
o
l
i
f
e
r
a
t
i
o
n

S
t
a
g
e

o
f
f
2
=
0
;

%
I
n
i
t
i
a
l
i
z
e

2
n
d

o
f
f
s
p
r
i
n
g

c
o
u
n
t
e
r

(
i
n
f
o
r
m
a
t
i
o
n
a
l

p
u
r
p
o
s
e
)

k
3
=
k
2
;

%
I
n
i
t
i
a
l
i
z
e

o
f
f
s
p
r
i
n
g

i
t
e
r
a
t
i
o
n

c
o
u
n
t

(
p
r
e
v
e
n
t
s

o
f
f
s
p
r
i
n
g

f
r
o
m

p
r
o
l
i
f
e
r
a
t
i
n
g

u
n
t
i
l

n
e
x
t

s
t
a
g
e
)

f
o
r

i
=
k
:
k
2
-
1

%
B
e
g
i
n

2
n
d

P
r
o
l
i
f
e
r
a
t
i
o
n

S
t
a
g
e

p
=
0
;

x
=
D
(
i
,
1
:
4
)
+
U
1
*
r
d
(
i
,
1
)
;

%
G
e
n
e
r
a
t
e

o
f
f
s
p
r
i
n
g

d
e
t
e
c
t
o
r

a
l
o
n
g

c
i
r
c
u
m
f
e
r
e
n
c
e

o
f

p
r
e
v
.

s
t
o
r
e
d

d
e
t
e
c
t
o
r
,

%
U
1
=
[
0
,
0
,
0
,
1
]

f
o
r

j
=
1
:
k
3
-
1

d
i
s
t
=
(
s
u
m
(
(
D
(
j
,
1
:
4
)
-
x
(
1
,
1
:
4
)
)
.
^
2
)
)
.
^
.
5
;

%
c
a
l
c
u
l
a
t
e

m
i
n

d
i
s
t
a
n
c
e

f
r
o
m

o
f
f
s
p
r
i
n
g

t
o

p
r
e
v
i
o
u
s

s
t
o
r
e
d

%
d
e
t
e
c
t
o
r
s

(
E
u
c
l
i
d
e
a
n

m
e
t
r
i
c
)

i
f

d
i
s
t
<
r
d
(
j
,
1
)

%
i
f

o
f
f
s
p
r
i
n
g

d
e
t
e
c
t
o
r

d
i
s
t
a
n
c
e

l
e
s
s

t
h
a
n

p
r
e
v
i
o
u
s

d
e
t
e
c
t
o
r

r
a
d
i
u
s
,

g
e
n
e
r
a
t
e

%
n
e
w

d
e
t
e
c
t
o
r

b
r
e
a
k

e
l
s
e

p
=
p
+
1
;

%
c
o
u
n
t
s

i
f

o
f
f
s
p
r
i
n
g

d
e
t
e
c
t
o
r

n
o
t

d
e
t
e
c
t
e
d

b
y

p
r
e
v
i
o
u
s

d
e
t
e
c
t
o
r
s

e
n
d

e
n
d

i
f

(
p
=
=
(
k
3
-
1
)
)

%
i
f

o
f
f
s
p
r
i
n
g

d
e
t
e
c
t
o
r

n
o
t

d
e
t
e
c
t
e
d

b
y

a
l
l

p
r
e
v
i
o
u
s

d
e
t
e
c
t
o
r
s

(
d
e
t
e
r
m
i
n
e
d

b
y

c
o
u
n
t
e
r

p
)

d
_
m
i
n
=
i
n
f
;

f
o
r

l
=
1
:
5
0

d
i
s
t
=
(
s
u
m
(
(
T
(
l
,
1
:
4
)
-
x
(
1
,
1
:
4
)
)
.
^
2
)
)
.
^
.
5
;

%
c
a
l
c
u
l
a
t
e
s

m
i
n

d
i
s
t
a
n
c
e

f
r
o
m

o
f
f
s
p
r
i
n
g

d
e
t
e
c
t
o
r

t
o

s
e
l
f

%
(
E
u
c
l
i
d
e
a
n

m
e
t
r
i
c
)

i
f

d
i
s
t
<
=
d
_
m
i
n

103

d
_
m
i
n
=
d
i
s
t
;

%
S
t
o
r
e

m
i
n
i
m
u
m

d
i
s
t
a
n
c
e

t
o

d
m
i
n

e
n
d

e
n
d

D
(
k
3
,
1
:
4
)
=
x
;

%
s
t
o
r
e

o
f
f
s
p
r
i
n
g

d
e
t
e
c
t
o
r

r
d
(
k
3
,
1
)
=
(
d
_
m
i
n
-
(
.
1
*
r
)
)
;

%
s
t
o
r
e

o
f
f
s
p
r
i
n
g

d
e
t
e
c
t
o
r

r
a
d
i
u
s

a
s

(
d
m
i
n
-
(
.
1
*
r
)
)

k
3
=
k
3
+
1
;

%
i
n
c
r
e
m
e
n
t

d
e
t
e
c
t
o
r

c
o
u
n
t

o
f
f
2
=
o
f
f
2
+
1
;

%
i
n
c
r
e
m
e
n
t

2
n
d

o
f
f
s
p
r
i
n
g

c
o
u
n
t
e
r

(
o
n
l
y

f
o
r

i
n
f
o
r
m
a
t
i
o
n
a
l

p
u
r
p
o
s
e
s
)

e
n
d

e
n
d

f
o
r

i
=
k
:
k
2
-
1

p
=
0
;

x
=
D
(
i
,
1
:
4
)
+
U
2
*
r
d
(
i
,
1
)
;

%
G
e
n
e
r
a
t
e

o
f
f
s
p
r
i
n
g

d
e
t
e
c
t
o
r

a
l
o
n
g

c
i
r
c
u
m
f
e
r
e
n
c
e

o
f

p
r
e
v
.

s
t
o
r
e
d

d
e
t
e
c
t
o
r
,

%
U
2
=
[
0
,
0
,
0
,
-
1
]

 (
R
e
p
e
a
t
s

a
g
a
i
n

f
o
r

e
a
c
h

v
a
r
i
a
t
i
o
n

o
f

U
,

U
2
,

U
3
,

U
4
,

U
5
,

U
6
,

U
7
,

U
8
)

 %
E
n
d

2
n
d

P
r
o
l
i
f
e
r
a
t
i
o
n

S
t
a
g
e

 f
o
r

i
=
1
:
1
5
0

%
B
e
g
i
n

t
e
s
t
i
n
g

F
u
l
l
_
d
a
t
a

f
o
r

c
l
a
s
s
i
f
i
c
a
t
i
o
n

f
o
r

j
=
1
:
k
3
-
1

d
i
s
t
=
(
s
u
m
(
(
F
(
i
,
1
:
4
)
-
D
(
j
,
1
:
4
)
)
.
^
2
)
)
.
^
.
5
;

%
f
i
n
d
s

d
i
s
t
a
n
c
e

f
r
o
m

d
e
t
e
c
t
o
r

'
i
'

t
o

e
a
c
h

t
e
s
t

d
a
t
a

s
a
m
p
l
e

i
f

d
i
s
t
<
(
r
d
(
j
,
1
)
)

%
C
h
e
c
k

i
f

d
i
s
t
a
n
c
e

i
s

l
e
s
s

t
h
a
n

d
e
t
e
c
t
o
r

r
a
d
i
u
s

s
e
l
f
(
1
,
i
)
=
0
;

%
I
f

y
e
s
,

s
e
t

s
e
l
f
=
0

(
N
o
n
s
e
l
f
)

b
r
e
a
k

e
l
s
e

s
e
l
f
(
1
,
i
)
=
1
;

%
I
f

n
o
,

s
e
t

s
e
l
f

t
o

o
n
e

(
S
e
l
f
)

e
n
d

e
n
d

e
n
d

s
e
l
f
=
s
e
l
f
;

%
O
u
t
p
u
t
s

a
r
r
a
y

o
f

c
l
a
s
s
i
f
i
c
a
t
i
o
n
s

(
1
=
s
e
l
f
,

0
=
N
o
n
s
e
l
f
)
(

T
o
t
a
l
_
S
e
l
f
_
I
n
c
o
r
r
e
c
t
=
5
0
-
s
u
m
(
s
e
l
f
(
1
,
1
:
5
0
)
)
;

%
O
u
t
p
u
t
s

c
o
u
n
t

o
f

t
o
t
a
l

s
e
l
f

c
e
l
l
s

i
d
e
n
t
i
f
i
e
d

I
n
c
o
r
r
e
c
t

T
o
t
a
l
_
N
o
n
s
e
l
f
=
1
0
0
-
s
u
m
(
s
e
l
f
(
1
,
5
1
:
1
5
0
)
)
;

%
O
u
t
p
u
t
s

c
o
u
n
t

o
f

t
o
t
a
l

N
o
n
s
e
l
f

c
e
l
l
s

i
d
e
n
t
i
f
i
e
d

C
o
r
r
e
c
t
l
y

k
3
=
k
3
;

%
O
u
t
p
u
t
s

D
e
t
e
c
t
o
r

c
o
u
n
t

 %
N
e
u
r
a
l

N
e
t
w
o
r
k

M
o
d
e
l

f
o
r

I
r
i
s

D
a
t
a

104

 %
O
n
e

l
a
y
e
r

o
f

1
5

h
i
d
d
e
n

n
e
u
r
o
n
s

%
S
e
l
f

d
e
f
i
n
e
d

a
s

V
e
r
s
i
c
o
l
o
r

(
d
e
s
i
r
e
d

o
u
t
p
u
t
=
1
)

%
N
o
n
s
e
l
f

d
e
f
i
n
e
d

a
s

o
t
h
e
r

f
l
o
w
e
r
r

(
d
e
s
i
r
e
d

o
u
t
p
u
t
=
0
)

M
S
E
=
1
0
0
;

%
I
n
i
t
i
a
l
i
z
e

M
S
E

t
o

1
0
0

b
=
1
;

%
A
s
s
i
g
n

b
i
a
s

t
o

o
n
e

a
=
1
;

%
I
n
i
t
i
a
l
i
z
e

c
o
n
s
t
a
n
t

o
f

l
o
g
i
s
t
i
c

f
u
n
c
t
i
o
n

t
o

1

l
e
a
r
n
=
.
2
;

%
I
n
i
t
i
a
l
i
z
e

l
e
a
r
n
i
n
g

r
a
t
e

t
o

0
.
2

w
1
=
r
a
n
d
n
(
1
5
,
4
)
;

%
R
a
n
d
o
m
l
y

a
s
s
i
g
n

i
n
i
t
i
a
l

w
e
i
g
h
t
s

w
i
t
h

z
e
r
o

m
e
a
n
,

s
t
d
=
1

w
2
=
r
a
n
d
n
(
1
,
1
5
)
;

%
R
a
n
d
o
m
l
y

a
s
s
i
g
n

i
n
i
t
i
a
l

w
e
i
g
h
t
s

w
i
t
h

z
e
r
o

m
e
a
n
,

s
t
d
=
1

w
b
1
=
r
a
n
d
n
(
1
5
,
1
)
;

%
R
a
n
d
o
m
l
y

a
s
s
i
g
n

i
n
i
t
i
a
l

w
e
i
g
h
t
s

t
o

b
i
a
s

'
b
'

w
i
t
h

z
e
r
o

m
e
a
n
,

s
t
d
=
1

w
b
2
=
r
a
n
d
n
(
1
,
1
)
;

%
R
a
n
d
o
m
l
y

a
s
s
i
g
n

i
n
i
t
i
a
l

w
e
i
g
h
t
s

t
o

b
i
a
s

'
b
'

w
i
t
h

z
e
r
o

m
e
a
n
,

s
t
d
=
1

T
=
V
e
r
s
i
c
o
l
o
r
;

%
A
s
s
i
g
n

T
=
T
r
a
i
n
i
n
g

D
a
t
a

F
=
I
r
i
s
_
F
u
l
l
_
D
a
t
a
;

%
A
s
s
i
g
n

F
=
F
u
l
l

I
r
i
s

D
a
t
a

(
A
l
l

D
a
t
a

P
o
i
n
t
s
)

w
h
i
l
e
(
M
S
E
>
.
0
1
)

%
S
t
o
p
p
i
n
g

C
r
i
t
e
r
i
a

(
V
a
r
i
o
u
s

m
e
t
r
i
c
s

t
e
s
t
e
d
)

f
o
r

t
r
i
a
l
=
1
:
1
0

T
=
T
'
;

%
T
r
a
n
s
p
o
s
e

T

T
=
T
(
r
a
n
d
p
e
r
m
(
7
5
)
,
:
)
;

%
R
a
n
d
o
m
l
y

a
r
r
a
n
g
e

c
o
l
u
m
n
s

o
f

T

T
=
T
'
;

%
T
r
a
n
s
p
o
s
e

T

f
o
r

i
=
1
:
7
5

f
o
r

j
=
1
:
1
5

y
i
=
T
(
1
:
4
,
i
)
;

%
A
s
s
i
g
n

y
i
=
i
n
p
u
t

d
a
t
a

f
r
o
m

T

v
(
1
,
j
)
=
(
s
u
m
(
w
1
(
j
,
1
:
4
)
*
y
i
(
1
:
4
,
1
)
)
)
+
b
*
w
b
1
(
j
,
1
)
;

%
C
a
l
c
u
l
a
t
e

v
j
=
s
u
m
(
w
1
(
j
,
i
)
*
y
i
)
+
b
i
a
s
*
w
b
1

%
f
o
r

e
a
c
h

n
e
u
r
o
n

y
j
(
j
,
1
)
=
1
/
(
1
+
e
x
p
(
-
a
*
v
(
1
,
j
)
)
)
;

%
C
a
l
c
u
l
a
t
e

o
u
t
p
u
t

o
f

l
o
g
i
s
t
i
c

%
f
u
n
c
t
i
o
n
=
y
j

(
o
u
t
p
u
t

o
f

n
e
u
r
o
n
)

e
n
d

f
o
r

k
=
1
:
1
5

v
k
_
t
e
m
p
=
s
u
m
(
w
2
(
1
,
1
:
k
)
*
y
j
(
1
:
k
,
1
)
)
;

%
C
a
l
c
u
l
a
t
e

v
k

f
r
o
m

o
u
t
p
u
t

o
f

e
a
c
h

n
e
u
r
o
n

%
v
k
=
s
u
m
(
w
2
(
k
,
j
)
*
y
j
)

e
n
d

v
k
=
v
k
_
t
e
m
p
+
(
b
*
w
b
2
)
;

%
C
a
l
c
u
l
a
t
e

f
i
n
a
l

v
a
l
u
e

o
f

v
k

t
o

i
n
c
l
u
d
e

%
b
i
a
s

w
e
i
g
h
t

y
k
=
1
/
(
1
+
e
x
p
(
-
a
*
v
k
)
)
;

%
C
a
l
u
l
a
t
e

f
i
n
a
l

o
u
t
p
u
t
,

y
k

u
s
i
n
g

%
l
o
g
i
s
t
i
c

f
u
n
c
t
i
o
n

e
k
(
1
,
i
)
=
T
(
5
,
i
)
-
y
k
;

%
C
a
l
c
u
l
a
t
e

e
r
r
o
r

=

%
d
e
s
i
r
e
d

o
u
t
p
u
t
-
a
c
t
u
a
l

o
u
t
p
u
t

 d
k
=
a
*
e
k
(
1
,
i
)
*
y
k
*
(
1
-
y
k
)
;

%
B
e
g
i
n

B
a
c
k

p
r
o
p
o
g
a
t
i
o
n
,

105

%
C
a
l
c
u
l
a
t
e

l
o
c
a
l

g
r
a
d
i
e
n
t

(
d
e
l
t
a

k
)

f
o
r

k
=
1
:
1
5

w
2
_
n
e
w
(
1
,
k
)
=
w
2
(
1
,
k
)
+
(
l
e
a
r
n
*
d
k
*
y
j
(
k
,
1
)
)
;

%
U
p
d
a
t
e

w
e
i
g
h
t
s

f
r
o
m

o
u
t
p
u
t

n
e
u
r
o
n

t
o

%
h
i
d
d
e
n

n
e
u
r
o
n

w
2
(
k
,
j
)

w
b
2
_
n
e
w
=
w
b
2
+
(
l
e
a
r
n
*
d
k
*
b
)
;

%
U
p
d
a
t
e

b
i
a
s

w
e
i
g
h
t

o
f

o
u
t
p
u
t

n
e
u
r
o
n

e
n
d

f
o
r

j
=
1
:
1
5

d
j
(
1
,
j
)
=
a
*
y
j
(
j
,
1
)
*
(
1
-
y
j
(
j
,
1
)
)
*
(
(
s
u
m
(
d
k
*
w
2
(
1
,
1
:
j
)
)
)
+
(
d
k
*
w
b
2
)
)
;

%
C
a
l
c
u
l
a
t
e

l
o
c
a
l

g
r
a
d
i
e
n
t

%
f
o
r

e
a
c
h

h
i
d
d
e
n

n
e
u
r
o
n

(
d
e
l
t
a

j
)

e
n
d

f
o
r

j
=
1
:
1
5

f
o
r

k
=
1
:
4

w
1
_
n
e
w
(
j
,
k
)
=
w
1
(
j
,
k
)
+
(
l
e
a
r
n
*
d
j
(
1
,
j
)
*
y
i
(
k
,
1
)
)
;

%
U
p
d
a
t
e

w
e
i
g
h
t
s

f
r
o
m

i
n
p
u
t

t
o

%
h
i
d
d
e
n

n
e
u
r
o
n
s

w
1
(
j
,
i
)

e
n
d

w
b
1
_
n
e
w
(
j
,
1
)
=
w
b
1
(
j
,
1
)
+
(
l
e
a
r
n
*
d
j
(
1
,
j
)
*
b
)
;

%
U
p
d
a
t
e

b
i
a
s

w
e
i
g
h
t

o
f

h
i
d
d
e
n

n
e
u
r
o
n
s

e
n
d

w
2
=
w
2
_
n
e
w
;

%
A
s
s
i
g
n

n
e
w

w
e
i
g
h
t
s

t
o

w
2

w
1
=
w
1
_
n
e
w
;

%
A
s
s
i
g
n

n
e
w

w
e
i
g
h
t
s

t
o

w
1

w
b
1
=
w
b
1
_
n
e
w
;

%
A
s
s
i
g
n

n
e
w

w
e
i
g
h
t
s

t
o

w
b
1

w
b
2
=
w
b
2
_
n
e
w
;

%
A
s
s
i
g
n

n
e
w

w
e
i
g
h
t
s

t
o

w
b
2

e
n
d

e
n
d

T
=
T
'
;

%
T
r
a
n
s
p
o
s
e

T

T
=
T
(
r
a
n
d
p
e
r
m
(
7
5
)
,
:
)
;

%
R
a
n
d
o
m
l
y

a
r
r
a
n
g
e

c
o
l
u
m
n
s

o
f

T

T
=
T
'
;

%
T
r
a
n
s
p
o
s
e

T

f
o
r

i
=
1
:
7
5

f
o
r

j
=
1
:
1
5

y
i
=
T
(
1
:
4
,
i
)
;

%
A
s
s
i
g
n

y
i
=
i
n
p
u
t

d
a
t
a

f
r
o
m

T

v
(
1
,
j
)
=
(
s
u
m
(
w
1
(
j
,
1
:
4
)
*
y
i
(
1
:
4
,
1
)
)
)
+
b
*
w
b
1
(
j
,
1
)
;

%
C
a
l
c
u
l
a
t
e

v
j
=
s
u
m
(
w
1
(
j
,
i
)
*
y
i
)
+
b
i
a
s
*
w
b
1

%
f
o
r

e
a
c
h

n
e
u
r
o
n

y
j
(
j
,
1
)
=
1
/
(
1
+
e
x
p
(
-
a
*
v
(
1
,
j
)
)
)
;

%
C
a
l
c
u
l
a
t
e

o
u
t
p
u
t

o
f

l
o
g
i
s
t
i
c

%
f
u
n
c
t
i
o
n
=
y
j

(
o
u
t
p
u
t

o
f

n
e
u
r
o
n
)

e
n
d

f
o
r

k
=
1
:
1
5

v
k
_
t
e
m
p
=
s
u
m
(
w
2
(
1
,
1
:
k
)
*
y
j
(
1
:
k
,
1
)
)
;

%
C
a
l
c
u
l
a
t
e

v
k

f
r
o
m

o
u
t
p
u
t

o
f

e
a
c
h

n
e
u
r
o
n

%
v
k
=
s
u
m
(
w
2
(
k
,
j
)
*
y
j
)

e
n
d

106

v
k
=
v
k
_
t
e
m
p
+
(
b
*
w
b
2
)
;

%
C
a
l
c
u
l
a
t
e

f
i
n
a
l

v
a
l
u
e

o
f

v
k

t
o

i
n
c
l
u
d
e

b
i
a
s

w
e
i
g
h
t

y
k
=
1
/
(
1
+
e
x
p
(
-
a
*
v
k
)
)
;

%
C
a
l
c
u
l
a
t
e

f
i
n
a
l

o
u
t
p
u
t
,

y
k

u
s
i
n
g

l
o
g
i
s
t
i
c

f
u
n
c
t
i
o
n

e
k
(
1
,
i
)
=
T
(
5
,
i
)
-
y
k
;

%
C
a
l
c
u
l
a
t
e

e
r
r
o
r

=

d
e
s
i
r
e
d

o
u
t
p
u
t
-
a
c
t
u
a
l

o
u
t
p
u
t

e
n
d

f
o
r

k
=
1
:
7
5

M
S
E
=
(
s
u
m
(
(
e
k
(
1
,
1
:
k
)
.
^
2
)
/
2
)
)
/
7
5
;

%
C
a
l
c
u
l
a
t
e

m
e
a
n

s
q
u
a
r
e
d

e
r
r
o
r

=

s
u
m
(
e
k
(
N
)
^
2
/
2
)
/
N

%
(
N
=
n
u
m
b
e
r

o
f

d
a
t
a

s
e
t
s
)

e
n
d

e
n
d

%
E
n
d

T
r
a
i
n
i
n
g

p
h
a
s
e

(
o
n
c
e

s
t
o
p
p
i
n
g

c
r
i
t
e
r
i
a

a
c
h
i
e
v
e
d
)

f
o
r

i
=
1
:
1
5
0

%
B
e
g
i
n

T
e
s
t
i
n
g

F
u
l
l

D
a
t
a

f
o
r

j
=
1
:
1
5

y
i
=
F
(
1
:
4
,
i
)
;

%
A
s
s
i
g
n

y
i

t
o

i
n
p
u
t

d
a
t
a

T

v
(
1
,
j
)
=
(
s
u
m
(
w
1
(
j
,
1
:
4
)
*
y
i
(
1
:
4
,
1
)
)
)
+
b
*
w
b
1
(
j
,
1
)
;

%
C
a
l
c
u
l
a
t
e

v
j

a
s

b
e
f
o
r
e

y
j
(
j
,
1
)
=
1
/
(
1
+
e
x
p
(
-
a
*
v
(
1
,
j
)
)
)
;

%
C
a
l
c
u
l
a
t
e

y
j

a
s

b
e
f
o
r
e

e
n
d

f
o
r

k
=
1
:
1
5

v
k
_
t
e
m
p
=
s
u
m
(
w
2
(
1
,
1
:
k
)
*
y
j
(
1
:
k
,
1
)
)
;

%
C
a
l
c
u
l
a
t
e

v
k

a
s

b
e
f
o
r
e

e
n
d

v
k
=
v
k
_
t
e
m
p
+
(
b
*
w
b
2
)
;

%
U
p
d
a
t
e

v
k

t
o

i
n
c
l
u
d
e

b
i
a
s

w
e
i
g
h
t

y
k
=
1
/
(
1
+
e
x
p
(
-
a
*
v
k
)
)
;

%
C
a
l
c
u
l
a
t
e

f
i
n
a
l

o
u
t
p
u
t

y
k

i
f

y
k
>
.
5

%
I
f

o
u
t
p
u
t

i
s

g
r
e
a
t
e
r

t
h
a
n

1
/
2

s
e
l
f
(
1
,
i
)
=
1
;

%
D
a
t
a

i
s

c
l
a
s
s
i
f
i
e
d

a
s

s
e
l
f

e
l
s
e

s
e
l
f
(
1
,
i
)
=
0
;

%
O
t
h
e
r
w
i
s
e
,

D
a
t
a

i
s

c
l
a
s
s
i
f
i
e
d

a
s

n
o
n
s
e
l
f

e
n
d

e
n
d

D
e
t
e
c
t
i
o
n
_
R
a
t
e
=
1
0
0
-
s
u
m
(
s
e
l
f
(
1
,
1
:
5
0
)
)
-
s
u
m
(
s
e
l
f
(
1
,
1
0
1
:
1
5
0
)
)

%
C
a
l
c
u
l
a
t
e

D
e
t
e
c
t
i
o
n

R
a
t
e

a
s

d
e
f
i
n
e
d

b
y

A
I
S

F
a
l
s
e
_
A
l
a
r
m
=
(
5
0
-
s
u
m
(
s
e
l
f
(
1
,
5
1
:
1
0
0
)
)
)
*
2

%
C
a
l
c
u
l
a
t
e

F
a
l
s
e

A
l
a
r
m

R
a
t
e

a
s

d
e
f
i
n
e
d

b
y

A
I
S

107

