142,722 research outputs found

    Structure-Preserving Discretization of Incompressible Fluids

    Get PDF
    The geometric nature of Euler fluids has been clearly identified and extensively studied over the years, culminating with Lagrangian and Hamiltonian descriptions of fluid dynamics where the configuration space is defined as the volume-preserving diffeomorphisms, and Kelvin's circulation theorem is viewed as a consequence of Noether's theorem associated with the particle relabeling symmetry of fluid mechanics. However computational approaches to fluid mechanics have been largely derived from a numerical-analytic point of view, and are rarely designed with structure preservation in mind, and often suffer from spurious numerical artifacts such as energy and circulation drift. In contrast, this paper geometrically derives discrete equations of motion for fluid dynamics from first principles in a purely Eulerian form. Our approach approximates the group of volume-preserving diffeomorphisms using a finite dimensional Lie group, and associated discrete Euler equations are derived from a variational principle with non-holonomic constraints. The resulting discrete equations of motion yield a structure-preserving time integrator with good long-term energy behavior and for which an exact discrete Kelvin's circulation theorem holds

    The computational complexity of traditional Lattice-Boltzmann methods for incompressible fluids

    Full text link
    It is well-known that in fluid dynamics an alternative to customary direct solution methods (based on the discretization of the fluid fields) is provided by so-called \emph{particle simulation methods}. Particle simulation methods rely typically on appropriate \emph{kinetic models} for the fluid equations which permit the evaluation of the fluid fields in terms of suitable expectation values (or \emph{momenta}) of the kinetic distribution function f(r,v,t),f(\mathbf{r,v},t), being respectively r\mathbf{r} and\textbf{\}v\mathbf{v} the position an velocity of a test particle with probability density f(r,v,t)f(\mathbf{r,v},t). These kinetic models can be continuous or discrete in phase space, yielding respectively \emph{continuous} or \emph{discrete kinetic models} for the fluids. However, also particle simulation methods may be biased by an undesirable computational complexity. In particular, a fundamental issue is to estimate the algorithmic complexity of numerical simulations based on traditional LBM's (Lattice-Boltzmann methods; for review see Succi, 2001 \cite{Succi}). These methods, based on a discrete kinetic approach, represent currently an interesting alternative to direct solution methods. Here we intend to prove that for incompressible fluids fluids LBM's may present a high complexity. The goal of the investigation is to present a detailed account of the origin of the various complexity sources appearing in customary LBM's. The result is relevant to establish possible strategies for improving the numerical efficiency of existing numerical methods.Comment: Contributed paper at RGD26 (Kyoto, Japan, July 2008

    Lattice Boltzmann Thermohydrodynamics

    Full text link
    We introduce a lattice Boltzmann computational scheme capable of modeling thermohydrodynamic flows of monatomic gases. The parallel nature of this approach provides a numerically efficient alternative to traditional methods of computational fluid dynamics. The scheme uses a small number of discrete velocity states and a linear, single-time-relaxation collision operator. Numerical simulations in two dimensions agree well with exact solutions for adiabatic sound propagation and Couette flow with heat transfer.Comment: 11 pages, Physical Review E: Rapid Communications, in pres

    A Coupling Algorithm of Computational Fluid and Particle Dynamics (CFPD)

    Get PDF
    Computational fluid dynamics (CFD) and particle hydrodynamics (PHD) have been developed almost independently. CFD is classified into Eulerian and Lagrangian. The Eulerian approach observes fluid motion at specific locations in the space, and the Lagrangian approach looks at fluid motion where the observer follows an individual fluid parcel moving through space and time. In classical mechanics, particle dynamic simulations include molecular dynamics, Brownian dynamics, dissipated particle dynamics, Stokesian dynamics, and granular dynamics (often called discrete element method). Dissipative hydrodynamic method unifies these dynamic simulation algorithms and provides a general view of how to mimic particle motion in gas and liquid. Studies on an accurate and rigorous coupling of CFD and PHD are in literature still in a growing stage. This chapter shortly reviews the past development of CFD and PHD and proposes a general algorithm to couple the two dynamic simulations without losing theoretical rigor and numerical accuracy of the coupled simulation

    Inpainting Computational Fluid Dynamics with Deep Learning

    Full text link
    Fluid data completion is a research problem with high potential benefit for both experimental and computational fluid dynamics. An effective fluid data completion method reduces the required number of sensors in a fluid dynamics experiment, and allows a coarser and more adaptive mesh for a Computational Fluid Dynamics (CFD) simulation. However, the ill-posed nature of the fluid data completion problem makes it prohibitively difficult to obtain a theoretical solution and presents high numerical uncertainty and instability for a data-driven approach (e.g., a neural network model). To address these challenges, we leverage recent advancements in computer vision, employing the vector quantization technique to map both complete and incomplete fluid data spaces onto discrete-valued lower-dimensional representations via a two-stage learning procedure. We demonstrated the effectiveness of our approach on Kolmogorov flow data (Reynolds number: 1000) occluded by masks of different size and arrangement. Experimental results show that our proposed model consistently outperforms benchmark models under different occlusion settings in terms of point-wise reconstruction accuracy as well as turbulent energy spectrum and vorticity distribution.Comment: 20 pages, 9 figure

    Continuous and discrete Clebsch variational principles

    Full text link
    The Clebsch method provides a unifying approach for deriving variational principles for continuous and discrete dynamical systems where elements of a vector space are used to control dynamics on the cotangent bundle of a Lie group \emph{via} a velocity map. This paper proves a reduction theorem which states that the canonical variables on the Lie group can be eliminated, if and only if the velocity map is a Lie algebra action, thereby producing the Euler-Poincar\'e (EP) equation for the vector space variables. In this case, the map from the canonical variables on the Lie group to the vector space is the standard momentum map defined using the diamond operator. We apply the Clebsch method in examples of the rotating rigid body and the incompressible Euler equations. Along the way, we explain how singular solutions of the EP equation for the diffeomorphism group (EPDiff) arise as momentum maps in the Clebsch approach. In the case of finite dimensional Lie groups, the Clebsch variational principle is discretised to produce a variational integrator for the dynamical system. We obtain a discrete map from which the variables on the cotangent bundle of a Lie group may be eliminated to produce a discrete EP equation for elements of the vector space. We give an integrator for the rotating rigid body as an example. We also briefly discuss how to discretise infinite-dimensional Clebsch systems, so as to produce conservative numerical methods for fluid dynamics

    Modeling particle-fluid interaction in a coupled CFD-DEM framework

    Full text link
    In this work, we present an alternative methodology to solve the particle-fluid interaction in the resolved CFDEM coupling framework. This numerical approach consists of coupling a Discrete Element Method (DEM) with a Computational Fluid Dynamics (CFD) scheme, solving the motion of immersed particles in a fluid phase. As a novelty, our approach explicitly accounts for the body force acting on the fluid phase when computing the local momentum balance equations. Accordingly, we implement a fluid-particle interaction computing the buoyant and drag forces as a function of local shear strain and pressure gradient. As a benchmark, we study the Stokesian limit of a single particle. The validation is performed comparing our outcomes with the ones provided by a previous resolved methodology and the analytical prediction. In general, we find that the new implementation reproduces with very good accuracy the Stokesian dynamics. Complementarily, we study the settling terminal velocity of a sphere under confined conditions
    corecore