586 research outputs found

    A discontinuous Galerkin reduced basis numerical homogenization method for fluid flow in porous media

    Get PDF
    We present a new conservative multiscale method for Stokes flow in heterogeneous porous media. The method couples a discontinuous Galerkin finite element method (DG-FEM) at the macroscopic scale for the solution of an effective Darcy equation with a Stokes solver at the pore scale to recover effective permeabilities at macroscopic quadrature points. To avoid costly computation of numerous Stokes problems throughout the macroscopic computational domain, the pore geometry is parametrized and a model order reduction algorithm is used to select representative microscopic geometries. Accurate Stokes solutions and related permeabilities are obtained for these representative geometries in an offline stage. In an online stage, the DG-FEM is computed with permeabilities recovered at the desired macroscopic quadrature points from the precomputed Stokes solutions. The multiscale method is shown to be mass conservative at the macro scale and the computational cost for the online stage is similar to the cost of solving a single scale Darcy problem. Numerical experiments for two and three dimensional problems illustrate the efficiency and the performance of the proposed method

    Adaptive multiscale model reduction with Generalized Multiscale Finite Element Methods

    Get PDF
    In this paper, we discuss a general multiscale model reduction framework based on multiscale finite element methods. We give a brief overview of related multiscale methods. Due to page limitations, the overview focuses on a few related methods and is not intended to be comprehensive. We present a general adaptive multiscale model reduction framework, the Generalized Multiscale Finite Element Method. Besides the method's basic outline, we discuss some important ingredients needed for the method's success. We also discuss several applications. The proposed method allows performing local model reduction in the presence of high contrast and no scale separation

    SOLID-SHELL FINITE ELEMENT MODELS FOR EXPLICIT SIMULATIONS OF CRACK PROPAGATION IN THIN STRUCTURES

    Get PDF
    Crack propagation in thin shell structures due to cutting is conveniently simulated using explicit finite element approaches, in view of the high nonlinearity of the problem. Solidshell elements are usually preferred for the discretization in the presence of complex material behavior and degradation phenomena such as delamination, since they allow for a correct representation of the thickness geometry. However, in solid-shell elements the small thickness leads to a very high maximum eigenfrequency, which imply very small stable time-steps. A new selective mass scaling technique is proposed to increase the time-step size without affecting accuracy. New ”directional” cohesive interface elements are used in conjunction with selective mass scaling to account for the interaction with a sharp blade in cutting processes of thin ductile shells

    A Generalized Multiscale Finite Element Method for the Brinkman Equation

    Full text link
    In this paper we consider the numerical upscaling of the Brinkman equation in the presence of high-contrast permeability fields. We develop and analyze a robust and efficient Generalized Multiscale Finite Element Method (GMsFEM) for the Brinkman model. In the fine grid, we use mixed finite element method with the velocity and pressure being continuous piecewise quadratic and piecewise constant finite element spaces, respectively. Using the GMsFEM framework we construct suitable coarse-scale spaces for the velocity and pressure that yield a robust mixed GMsFEM. We develop a novel approach to construct a coarse approximation for the velocity snapshot space and a robust small offline space for the velocity space. The stability of the mixed GMsFEM and a priori error estimates are derived. A variety of two-dimensional numerical examples are presented to illustrate the effectiveness of the algorithm.Comment: 22 page
    • …
    corecore