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Abstract

We present a new conservative multiscale method for Stokes flow in heterogeneous
porous media. The method couples a discontinuous Galerkin finite element method
(DG-FEM) at the macroscopic scale for the solution of an effective Darcy equation
with a Stokes solver at the pore scale to recover effective permeabilities at macroscopic
quadrature points. To avoid costly computation of numerous Stokes problems through-
out the macroscopic computational domain, the pore geometry is parametrized and a
model order reduction algorithm is used to select representative microscopic geometries.
Accurate Stokes solutions and related permeabilities are obtained for these representa-
tive geometries in an offline stage. In an online stage, the DG-FEM is computed with
permeabilities recovered at the desired macroscopic quadrature points from the precom-
puted Stokes solutions. The multiscale method is shown to be mass conservative at the
macro scale and the computational cost for the online stage is similar to the cost of solv-
ing a single scale Darcy problem. Numerical experiments for two and three dimensional
problems illustrate the efficiency and the performance of the proposed method.

Keywords. Stokes flow, Darcy equation, numerical homogenization, reduced basis, dis-
continuous Galerkin, mass conservation
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1 Introduction

Fluid flow in porous media plays an important role in many scientific and engineering appli-
cations. The effective flow is commonly described by the Darcy equation, where the porous
structure is accounted for by an effective permeability tensor. While this effective perme-
ability can be modeled from macroscopic experiments for some applications, it is desirable
in many situations to have a more fundamental description of permeability that relies on a
(microscopic) pore scale. At this scale, the velocity of the fluid flows around solid obstacles
is modeled by the Stokes equation. However, solving the Stokes equation at pore scale for
a macroscopic computational domain has a prohibitive computational cost. We focus here
on models and numerical methods that bridge the Darcy and the Stokes model and combine
them into a multiscale method. Such methods are typically derived from the homogenization
theory [9, 22, 24] that studies the limit of the fine scale Stokes model when the pore size
tends to zero. The homogenization theory provides a methodology to obtain an effective
permeability from the local pore geometry by solving microscopic Stokes problems.
Multiscale method coupling Darcy and Stokes solvers have been considered recently. In [3],

the Darcy-Stokes finite element heterogeneous multiscale method (DS-FE-HMM) has been
introduced. The coupling strategy is based on the heterogeneous multiscale method (HMM),
reviewed in [6]. The Darcy problem is solved using the finite element method on a macroscopic
mesh, where the size of the elements is not restricted by the pore scale size ε. The effective
permeability is recovered around each quadrature point of the macroscopic mesh by sampling
the local porous structure and solving the Stokes micro problems numerically. The average
of the microscopic velocity fields permits then to infer a macroscopic permeability at the
macro quadrature points. By solving the Stokes problems only on small domains around
macroscopic quadrature points, this coupling strategy is much more efficient than solving a
Stokes problem at pore scale on the whole macroscopic domain. However, the large number of
Stokes problems to be solved (whose number increases with a macroscopic mesh refinement)
makes this strategy still computationally expensive, specially for three-dimensional problems.
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This issue has been addressed in [5] by employing a reduced basis method at the micro scale
that avoids repeated computation of microscopic Stokes problems through the selection of
representative microscopic geometries in an offline stage.
Other numerical methods that rely on the Stokes equation at pore scale have been proposed

in [10,13,23]. The multiscale approach in [10] uses the control volume method to discretize the
Darcy equation and a Navier-Stokes model is used on the micro scale. While this approach
allows a conservative macro solver and more precise micro model, there are some limiting
assumptions: piecewise periodic micro structure, alignment of the micro structure to a coarse
grid, and no volumetric forces. Another method, the multiscale FEM [13] uses a hierarchy
of macroscopic grids where micro problems are solved with various accuracy. This method
is efficient for simple macroscopic domains (such as squares or a union of squares) but more
difficult to use for complicated macroscopic domains. It also not mass conservative at the
macro scale.
None of the reviewed multiscale methods for Stokes flow in porous can simultaneously

accommodate:

• higher-order macroscopic methods on arbitrary macro domains,

• fast and accurate resolution of the micro scale,

• conservation of mass.

In this paper we present a new multiscale method that addresses theses three goals. At the
macro scale we use a symmetric interior penalty discontinuous Galerkin finite element method
(SIP-DG-FEM) with numerical quadrature. At each quadrature point of the macro mesh we
approximate the local permeability by a microscopic solver. The microscopic computation
of the permeability relies on the reduced basis technique developed in [5]. We next briefly
describe the approach on the macro and the micro scale.
The macroscopic method, the SIP-DG-FEM (see [11] for a reference), uses a discontinuous

finite element space, where continuity of the solution and Dirichlet boundary conditions are
imposed weakly via penalty terms on the edge jumps. This macroscopic method has been
successfully applied in the multiscale context for elliptic problems [2]. The SIP-DG-FEM is
further consistent and conservative when applied to single scale problems and these properties
are inherited by our multiscale method.
The effective permeability that needs to be approximated at every macroscopic quadrature

point is computed as follows. We assume that the local porous geometry is known for
any macroscopic coordinate and further, it can be mapped to a reference micro geometry.
This allows us to map the Stokes micro problems to the reference domain, with parameter
dependent coefficients. A fine micro mesh is introduced in the reference micro geometry and a
stable finite element pair is used to discretize the micro problems. We next discuss a reduced
basis (RB) algorithm that is divided into offline and online two stages. The offline stage can
be costly but it is performed only once. In the offline phase we construct the RB solution
space that is spanned by a small number of micro solutions that are solved in the reference
micro mesh for a small set of macroscopic parameters chosen via a greedy algorithm. We use
a Petrov–Galerkin projection of the micro problem (see [4]), where the reduced test space is
parameter-dependent. This choice guarantees approximation and algebraic stability of the
RB method. The online phase can be used repeatedly for any macroscopic coordinate. We
use the precomputed values to quickly assemble a small, dense stiffness matrix and right
hand side for the reduced problem. Then, the effective permeability can be approximated.
The cost of the online phase is independent of the reference microscopic meshes.
We discuss the well-posedness and a priori error analysis of the multiscale method. In the

error analysis we use the classical decomposition of error depending on its source: the macro,
micro, and RB error. To achieve an optimal method, all three errors should be balanced.
This is also studied via numerical experiments.
This paper is structured as follows. In Section 2 we present the multiscale flow problem

and recall some homogenization results. We describe the numerical multiscale method in
Section 3 and provide analysis in Section 4. Two and three-dimensional experiments that
corroborate the theoretical results and illustrate the performance of our method are provided
in Section 5.

Notation. Let C denote a generic constant whose value can change at any occurrence but
it depends only on explicitly indicated quantities. We consider a domain Ω ⊂ Rd, d ∈ N
and the usual Lebesgue space Lp(Ω) and Sobolev space W k,p(Ω) equipped with the usual
norms ‖ · ‖Lp(Ω) and ‖ · ‖Wk,p(Ω). On the factor space L2(Ω)/R, we define ‖q‖L2(Ω)/R =
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infs∈R ‖q + s‖L2(Ω). For p = 2 we apply the Hilbert space notation Hk(Ω) and H1
0 (Ω)

and define the seminorm |q|H1(Ω) = (
∑d
i=1 ‖∂iq‖2L2(Ω))

1/2. The standard scalar product on
L2(Ω) is denoted by (·, ·)L2(Ω). Given a matrix A ∈ Rd×d with entries Aij , we denote its
Frobenius norm by ‖A‖F = (

∑d
i,j=1A

2
ij)

1/2. Given a vector ξ ∈ Rd with entries ξi, we define
|ξ| = (

∑d
i=1 ξ

2
i )1/2.

2 Problem setting and homogenization

Let d ∈ {2, 3} and Ω ⊂ Rd be a connected, bounded domain. We consider a porous geometry
Ωε ⊂ Ω, where ε > 0 is the size of the pore scale. The aim of the proposed numerical method
is to approximate the velocity uε and the pressure pε of the fine scale Stokes problem

−∆uε +∇pε = f in Ωε,

divuε = 0 in Ωε.
(1)

We do not attempt to solve (1) directly as the cost of a standard discretization of Ωε
can be prohibitive for realistic ε, even on modern supercomputers. Instead, we rely on
homogenization theory that studies the behavior of pε and uε for ε→ 0+. An effective limit
solution can be derived in various situations, for example, for periodic porous media [9,22,24]
or locally periodic porous media [14], as follows. First, the solution (uε, pε) is extended to the
whole domain Ω and denoted (Uε, P ε). Second, one can show that there exist a homogenized
pressure p0 and a homogenized velocity u0 such that P ε → p0 strongly in L2

loc(Ω)/R and
Uε/ε2 → u0 weakly in L2(Ω). Finally, p0 can be shown to be a solution to the following
Darcy problem

∇ · a0(f −∇p0) = 0 in Ω (2)

and u0 = a0(f − ∇p0), where the effective permeability a0 that is related to the porous
structure of Ωε as is presented below.

Non-periodic porous media. Denote by Y the d-dimensional unit cube (−1/2, 1/2)d

and let YS ⊂ Y be a closed set with positive measure. Define YF = Y \YS and assume that
YF also has a positive measure. The subscripts F and S stand for the fluid and solid part,
respectively. Homogenization theory assumes that both sets YF and Rd\ ∪z∈Zd (z + YS) are
connected and have locally Lipschitz boundaries. If Ω ⊂ Rd and ε > 0 are given, one can
define a periodic porous medium by Ωε = Ω\ ∪k∈Zd ε(k + YS).
A natural generalization of the periodic porous medium is to introduce variation in the

porosity by considering a family of deformations of the reference porous geometry (YF, YF).
Consider a continuous map ϕ : Rd × Y → Y such that for every x ∈ Rd the map ϕ(x, ·) :
Y → Y is a homeomorphism such that ϕ(x, ·), ϕ(x, ·)−1 ∈W 1,∞(Y ). For any x ∈ Ω we define
the local pore geometry as Y xS = ϕ(x, YS) and Y xF = Y \Y xS . We define the periodic porous
medium Ωε for any given ε > 0 as

Ωε = Ω\ ∪k∈Zd ε(k + Y εkS ). (3)

For an illustration see Figure 1.

Homogenized tensor a0. For any point x ∈ Ω we can compute a0(x) by solving Stokes
micro problems and taking an integral of the computed velocity fields. For every i ∈ {1, . . . , d}
find the velocity ui,x and pressure pi,x such that

−∆ui,x +∇pi,x = ei in Y xF , ui,x = 0 on ∂Y xS ,

divui,x = 0 in Y xF , ui,x and pi,x are Y -periodic,
(4)

where ei is the i-th canonical basis vector in Rd. The pressure is unique only up to a constant
(cf. section 3.2). We then define

a0
ij(x) =

∫
Y xF

uj,xi dy ∀i, j ∈ {1, . . . , d}. (5)

3 The multiscale numerical method

We present a new numerical method for solving the effective macro problem (2) coupled with
the micro problems (4) that are used to approximate the effective permeability (5). The
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Figure 1: A reference porous geometry (YF, YS), where YS represents a circular solid inclusion.
A periodic porous medium (left) and a non-periodic porous medium (right) with a zoom on
the local porous geometry (Y xF , Y

x
S ) at two points x1, x2 ∈ Ω.

macro problem (2) is discretized using the symmetric interior penalty (SIP) discontinuous
Galerkin finite element method (DG-FEM) with numerical quadrature (see section 3.1). In
section 3.2 we describe a finite element (FE) discretization of the micro problems (4) and
we define a reduced basis (RB) method that gives an approximation aRB(x) ≈ a0(x) for any
x ∈ Ω. An efficient implementation of the RB method is presented in section 3.3, where an
offline/online splitting is described. Finally, we apply the heterogeneous multiscale method
(HMM) framework (see [6]) by using the computable tensor aRB (instead of a0) in the DG-
FEM and thus introduce a fully discrete multiscale method in section 3.4.

3.1. Macro scale: The symmetric interior penalty DG-FEM. We begin by
discretizing the macro scale and for the moment we assume that the effective permeability
a0(x) is known for every x ∈ Ω. Such macro problem discretization was already studied in
the case of homogenization-based multiscale methods for elliptic problems [2, 7].
While the macroscopic Darcy equation (2) follows directly from the homogenization theory,

one usually considers the form

−∇ · (a0∇p0) = f in Ω,

p0 = gD on ΓD,

a0∇p0 · n = gN on ΓN,

(6)

where the boundary is divided into a Dirichlet and Neumann part by ∂Ω = ΓD ∪ ΓN and n
denotes the outward normal vector.
Let TH be a conformal, shape-regular partition of Ω into simplicial elements K of diameter

HK with H = maxK∈TH HK . Let Eint be the set of all interior element interfaces (edges
or faces), ED the set of all boundary Dirichlet interfaces, and EN the set of all boundary
Neumann interfaces. Finally, define E = Eint ∪ ED ∪ EN and Epen = Eint ∪ ED. Let e ∈ Eint
be an interface between two elements K1 and K2 and let ni denote the outward normal
vector of Ki on e for i ∈ {1, 2}. Let q be any element-wise smooth function and v be any
element-wise smooth vector function. For i ∈ {1, 2}, let qi and vi denote the trace of q and
v on e from within Ki, respectively. We define the average {·} and the jump [[·]] of q and v
over e by

{q} = (q1 + q2)/2, [[q]] = q1n1 + q2n2,

{v} = (v1 + v2)/2, [[v]] = v1 · n1 + v2 · n2.
(7)

For any boundary edge e ∈ ED ∪ EN, belonging only to one element K1, we define {q} = q1,
[[q]] = q1n1, {v} = v1, and [[v]] = v1 · n1. Let us define a discontinuous finite element space
of degree l ∈ N by

Sldis(TH) = {qH ∈ L2(Ω); qH |K ∈ P l(K), ∀K ∈ TH},

where P l(K) is the space of polynomials on the simplicial element K of total degree l.
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SIP-DG-FEM derivation. We briefly recall how a symmetric interior penalty discontin-
uous Galerkin finite element method can be derived for the problem (6). For further details
and analysis see [2, 11, 16]. We multiply the equation from (6) by a smooth test function q
and integrate by parts over and element K ∈ TH to get∫

K

a0∇p0 · ∇q dx−
∫
∂K

a0∇p0 · nq ds =

∫
K

fq dx.

Summing over all elements K ∈ TH and using the notation (7) and the Neumann boundary
condition we obtain∫

Ω

a0∇p0 · ∇q dx−
∑
e∈Epen

∫
e

{a0∇p0} · [[q]] ds =

∫
Ω

fq dx+

∫
ΓN

gNq ds. (8)

Notice that since p0 ∈ H1(Ω), we have [[p0]] = 0 on Eint. Moreover the Dirichlet boundary
conditions imply [[p0]] = gDn on ΓD. Taking this fact into account we can symmetrize the
left-hand side of (8) and obtain∫

Ω

a0∇p0 · ∇q dx−
∑
e∈Epen

∫
e

({a0∇p0} · [[q]] + {a0∇q} · [[p0]]) ds

=

∫
Ω

fq dx+

∫
ΓD

a0∇q · ngD ds+

∫
ΓN

gNq ds.

Finally, to stabilize the method we add penalty terms that will weakly impose continuity of
the solution over Eint and also the Dirichlet boundary conditions. In section 4 we will define
a non-negative weight function σ : ∪e∈Epene → R such that σ|e is constant over each edge
e ∈ Epen. Adding the penalty term then yields∫

Ω

a0∇p0 · ∇q dx−
∑
e∈Epen

∫
e

({a0∇p0} · [[q]] + {a0∇q} · [[p0]]− σ[[p0]] · [[q]]) ds

=

∫
Ω

fq dx+

∫
ΓD

(a0∇q · n + σq)gD ds+

∫
ΓN

gNq ds.

(9)

Numerical quadrature. To obtain a FEM with numerical quadrature based on (9) we
need to take care of the integrals that contain a0. For every element K ∈ TH consider a
quadrature formula (xKj , ωKj )j=1,...,J , where xKj ∈ K are integration points and ωKj > 0
are weights. The volume integral can be approximated directly with the quadrature formula
and the following assumption is needed for optimal accuracy.
Assumption (Q). The quadrature formula is exact for polynomials of order up to m =

max(2l−2, l). That is, for any K ∈ TH and q ∈ Pm(K) we have
∫
K
q dx =

∑J
j=1 ωKjq(xKj ).

To take care of the boundary and interface integrals containing a0, we define the multiscale
numerical flux [1, 2]. The minimal number of quadrature points for which assumption (Q)
can hold is

(
l+d−1
d

)
. If we assume that J =

(
l+d−1
d

)
we can define for each element K ∈ TH a

unique interpolant Π : C(K)→ P l−1(K) that is exact on all quadrature points: Π(q)(xKj ) =
q(xKj ) for every j ∈ {1, . . . , J}. For any tensor a(x) that is defined at each quadrature point
xKj of TH , we define the interpolation operator Πa : Sl−1

dis (TH)d → Sl−1
dis (TH)d that is given

by
Πa(v)(xKj ) = a(xKj )v(xKj ), ∀K ∈ TH , ∀j ∈ {1, . . . , J}.

We then replace the terms of type a0∇q in (9) by their polynomial approximations Πa0(∇q).
Hence, we define the discrete macroscopic approximation of (6) as follows.

Semi-discrete problem. Find pH,0 ∈ Sldis(TH) such that

B0
H(pH,0, qH) = L0

H(qH) ∀qH ∈ Sldis(TH), (10)

where

B0
H(pH , qH) =

∫
Ω

Πa0(∇pH) · ∇qH −
∑
e∈Epen

∫
e

({Πa0(∇pH)} · [[qH ]]

+ {Πa0(∇qH)} · [[pH ]]− σ[[pH ]] · [[qH ]]) ds

L0
H(qH) =

∫
Ω

fqH dx+

∫
ΓD

(Πa0(∇qH) · n + σqH)gD ds+

∫
ΓN

gNq
H ds.
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3.2. Micro scale: A reduced basis method. In the following two sections we
recall the Petrov-Galerkin reduced basis (RB) method for the micro problems (4) and the
output of interest (5). We first map the micro problems (4) from Y xF to the reference micro
domain YF, where we consider a stable FE approximation. Second, we apply a Petrov-
Galerkin projection to a low-dimensional solution space and a parameter-dependent test
space, obtaining a reduced model (20), (22). An efficient implementation of this method and
its properties are then discussed in section 3.3. We discuss here only the essential parts of
the method. Further details are explained in [4, 5].

Weak formulation. Consider a weak formulation of (4) that uses a Lagrange multiplier to
enforce the normalization of the pressure (cf. section 2). Given x ∈ Ω and any i ∈ {1, . . . , d},
find ui,x ∈ H1

0,per(Y
x
F )d, pi,x ∈ L2(Y xF ), and λi,x ∈ R such that∫

Y xF

d∑
j=1

∇ui,xj · ∇vj dy −
∫
Y xF

pi,xdivv dy =

∫
Y xF

vi dy ∀v ∈ H1
0,per(Y

x
F ),

−
∫
Y xF

qdivui,x dy + λi,x
∫
Y xF

q dy = 0 ∀q ∈ L2(Y xF ),

κ

∫
Y xF

pi,x dy = 0 ∀κ ∈ R.

(11)

The space H1
0,per(Y

x
F ) consists of Y -periodic functions with zero trace on ∂Y xS .

Reference micro domain. We map the problem (11) from the domain Y xF to the ref-
erence domain YF using the change of variables yold = ϕ(x, ynew), stemming from the
mapping ϕ(x, ·) : YF → Y xF . Let us denote the Jacobian Jx(y) = ∇yϕ(x, y) and define
νx(y) = det(Jx)((Jx)>Jx)−1 and κx(y) = det(Jx)(Jx)−>. The mentioned change of vari-
ables transforms (11) into

a(ui,x,e,v;x) + b(v, pi,x,e;x) = gi(v;x), ∀v ∈ H1
0,per(YF),

b(ui,x,e, q;x) + c(q, λi,x,e;x) = 0, ∀q ∈ L2(YF),

c(pi,x,e, κ;x) = 0 ∀κ ∈ R,
(12)

where

a(u,v;x) =

d∑
i,j=1

∫
YF

νxij(y)
∂u

∂yi
· ∂v
∂yj

dy, c(q, κ;x) = κ

∫
YF

det(Jx)q dy,

b(v, q;x) = −
d∑

i,j=1

∫
YF

κxij(y)
∂vi
∂yj

q dy, gi(v;x) =

∫
YF

det(Jx)vi dy.

(13)

For the ease of manipulation, we simplify the notation of the system (12) one step further by
combining the three equations into one. Let us denote X = H1

0,per(YF)× L2(YF)× R. Find
Ui,x

e = (ui,x,e, pi,x,e, λi,x,e) ∈ X such that

a(ui,x,e,v;x) + b(v, pi,x,e;x) + b(ui,x,e, q;x)

+ c(q, λi,x,e;x) + c(pi,x,e, κ;x)︸ ︷︷ ︸ = gi(v;x)︸ ︷︷ ︸ ∀(v, q, κ) ∈ X (14)

A(Ui,x
e ,V;x) = Gi(V;x) ∀V ∈ X (15)

for every V = (v, q, κ) ∈ X. Here, the index e stands for exact solution. In (15) we simplified
the notation further by defining a parameter dependent symmetric bilinear form A(·, ·;x)
and linear forms Gi(·;x). The problems (15) and (11) are equivalent, that is, ui,x(ϕ(x, y)) ≡
ui,x,e(y). Hence, the effective permeability (5) reads

a0
ij(x) = gi(uj,x) = gi(uj,x,e;x) = Gi(Uj,x

e ;x) ∀i, j ∈ {1, . . . , d}. (16)

Discretization of (15). Let Th be a conformal, shape-regular triangulation of YF, where
h = maxK∈Th hK and hK = diam(K). We consider a stable FE pair such as the Taylor-Hood
Pk+1/Pk FE given by

Lh = {q ∈ Sk(Th); q is Y -periodic},
Wh = {v ∈ Sk+1(Th)d; v is Y -periodic},

(17)
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where
Sk(Th) = {qh ∈ L2(YF); qh|K ∈ Pk(K), ∀K ∈ Th}.

Consider a finite dimensional subspace of X given by Xh = Wh × Lh × R. We define a
numerical approximation of the solution of the problem (15) and of the output of interest
a0(x) as follows. Find Ui,x

h = (ui,x,h, pi,x,h, λi,x,h) ∈ XN such that

A(Ui,x
h ,V;x) = Gi(V;x) ∀V ∈ Xh, (18)

ahij(x) = Gi(Uj,x
h ;x) ∀i, j ∈ {1, . . . , d}. (19)

Petrov-Galerkin projection. Let i ∈ {1, . . . , d} and assume that we have a linear sub-
space Xi ⊂ Xh that is a good approximation to the solution manifoldM = {Ui,x

h ;x ∈ Ω} ⊂
Xh, i.e., a linear subspace with a small projection error with respect to the solution manifold.
Our goal is to project (18) to Xi while keeping good approximation and stability properties.
It was shown in [4] that this can be achieved by considering a Petrov-Galerkin method
with Xi as a solution space and a parameter-dependent test space Y xi = T (Xi;x), where
T : Xh × Ω→ Xh, called the supremizer operator, is defined below. The RB approximation
of (18) then reads: find Ui,x

RB ∈ Xi such that

A(Ui,x
RB,V;x) = Gi(V;x) ∀V ∈ Y xi . (20)

For any x ∈ Ω and U ∈ Xh we choose T (U;x) ∈ Xh such that

(T (U;x),V)X = A(U,V;x) ∀V ∈ Xh. (21)

The variational problem (21) is well-posed and admits a unique solution T (U;x). For any
x ∈ Ω the operator T (·;x) : Xh → Xh is linear.
Our main interest is an approximation of the effective permeability a0(x), which will be de-

noted as aRB(x). While the straightforward choice (see (16)) would be aRB
ij (x) = Gi(Uj,x

RB;x),
one can obtain higher accuracy with (see [20])

aRB
ij (x) = Gi(Uj,x

RB;x) +Gj(Ui,x
RB;x)−A(Uj,x

RB,U
i,x
RB;x) ∀i, j ∈ {1, . . . , d}. (22)

Selecting Y xi as the solution space allows us to prove stability of the method, that is, the
inf-sup constant number of A(·, ·;x) : Xi × Y xi → R is not smaller than the inf-sup constant
of A(·, ·;x) : Xh ×Xh → R. In the next section we will give some additional details on the
construction of the offline space Xi and on the procedure to approximate a0(x) by aRB(x).
The full numerical multiscale method is then described in section 3.4.

3.3. Micro scale: The offline/online splitting. In this section we start with an
essential ingredient of an effective reduced basis implementation: the affine decomposition of
the bilinear form A(·, ·;x) and the linear forms Gi(·;x). We show how to construct such a
decomposition provided that ϕ(x, y) is piecewise linear in y (an extension for a general map
ϕ(x, y) is outlined). We then show how the reduced basis method is split in two phases.

• The offline phase is run only once and it is used to construct the RB space Xi and
precompute necessary values for the online phase.

• The online phase can be run after the offline phase repeatedly and it provides a cheap
and accurate approximation of the effective permeability aRB(x) for any x ∈ Ω.

It is essential that the time cost of the online phase is independent of dim(Xh), so that the
cost of taking a very fine microscopic mesh will affect only the offline phase.

Affine decomposition. Let us have a closer look at the parameter-dependent linear forms
Gi(·;x) defined in (15) and (13). We have Gi(V;x) =

∫
YF

det(Jx(y))vi(y) dy for every
V = (v, q, κ) ∈ X. Our goal is to write Gi(·;x) as a sum of products of functions depending
only on x or only on V . Let R ∈ N and assume that {Y rF}Rr=1 is a disjoint partition of YF
such that the restriction ϕ(y;x)|y∈Y rF is linear for every x ∈ Ω and r ∈ {1, . . . , R}. Under
this assumption the Jacobian Jx(y) is constant for y ∈ Y rF (denote the constant matrix Jx,r)
and thus we can write

Gi(V;x) =
∑R

r=1
det(Jx,r)

∫
Y rF

vi dy.

Similarly, the bilinear form A(·, ·;x) can be decomposed into a sum of products of non-
parametric bilinear forms and functions of x, because the coefficients νxij and κxij are piecewise
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constant in y. If ϕ(y;x) is not affine, then one can apply the empirical interpolation method
(see [12]) to (x, y) 7→ det(Jx(y)) to obtain an expansion det(Jx(y)) ≈ f1(y)g1(x) + · · · +
fR(y)gR(x). We then have

Gi(V;x) ≈
∑R

r=1
gr(x)

∫
YF

fr(y)vi dy,

where the parameter R ∈ N controls the accuracy of the approximation. Regardless of how
we achieve it, we will assume for the rest of the paper that the following assumption is true.
Assumption (A). Assume that there are

• symmetric bilinear forms Aq(·, ·) : X ×X → R for q ∈ {1, . . . , QA}, where QA ∈ N,

• linear forms Giq(·) : X → R for q ∈ {1, . . . , QG} and i ∈ {1, . . . , d}, where QG ∈ N,

• vector fields ΘA : Ω→ RQA and ΘG : Ω→ RQG ,

such that for any U,V ∈ X, parameter x ∈ Ω, and i ∈ {1, . . . , d} we have

A(U,V;x) =
∑QA

q=1
ΘA
q (x)Aq(U,V), Gi(V;x) =

∑QG

q=1
ΘG
q (x)Giq(V). (23)

Based on (23) we can introduce an affine decomposition of T (·;x) as

T (U;x) =
∑QA

q=1
ΘA
q (x)T q(U), (24)

where the linear functionals T q : Xh → Xh are defined by variational problems: Find
T q(U) ∈ Xh such that (T q(U),V)X = Aq(U,V) for every V ∈ Xh.

An example of affine decomposition. To illustrate the above procedure, we give a
simple example of a reference micro geometry (YF, YS) and a piecewise-linear mapping ϕ
that leads to (A). Let YS be a circle with radius 0.25 and YF = Y \YS as is shown in Figure 2.
We divide YF into two domain: Y 1

F = {y ∈ YF; y1 < 0} and Y 2
F = {y ∈ YF; y1 > 0}. Given a

function r : Ω→ (−0.5, 0.5), the mapping ϕ(x, ·) : Y → Y stretches the subdomains Y 1
F and

Y 2
F such that their common boundary (line given by y1 = 0) is moved to the line given by
y1 = r(x) (see Figure 2). Formally, we have

ϕ(x, y) =

{
(y1(1 + 2r(x)) + r, y2) for y ∈ Y 1

F

(y1(1− 2r(x)) + r, y2) for y ∈ Y 2
F ,

which then implies that the Jacobian matrix Jx(y) is diagonal and equal to

Jx(y) =

{
diag(1 + 2r(x), 1) for y ∈ Y 1

F

diag(1− 2r(x), 1) for y ∈ Y 2
F .

Using (13) we obtain

a(u,v;x) =
1

1 + 2r(x)

∫
Y 1
F

u

∂y1
· v

∂y1
dy +

∫
Y 1
F

u

∂y2
· v

∂y2
dy

+
1

1− 2r(x)

∫
Y 2
F

u

∂y1
· v

∂y1
dy +

∫
Y 2
F

u

∂y2
· v

∂y2
dy

and we get similar affine decompositions of the other two bilinear forms (b and c). One can
regroup these terms of A(U,V;x) in a way that QA = 4 and QG = 2 with

ΘA
1 (x) =

1

1 + 2r(x)
, ΘA

2 (x) =
1

1− 2r(x)
, ΘA

3 (x) = 1, ΘA
4 (x) = r(x),

ΘG
1 (x) = 1, ΘG

2 (x) = r(x).

RB space. The RB space Xi is spanned by solutions Ui,x
h to (18) for a carefully se-

lected set of parameters Si = {xi,1, xi,2, . . . , xi,Ni} ⊂ Ω, where Ni ∈ N. Let us denote
{Ui,1

h ,Ui,2
h , . . . ,Ui,Ni} the result of applying the Gram–Schmidt orthogonalization proce-

dure on {Ui,xi,1

h ,Ui,xi,2

h , . . . ,Ui,xi,Ni

h }. We than have

Xi = span{Ui,1
h ,Ui,2

h , . . . ,Ui,Ni}. (25)

The set Si is constructed in the offline phase for every i ∈ {1, . . . , d}. However, we first
consider the online phase.
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Figure 2: An illustration of the mapping ϕ for the example of affine decomposition.

Online phase: evaluation of aRB. Let us consider the reduced system (20) for any
x ∈ Ω and i ∈ {1, . . . , d} and let us look for the solution Ui,x

RB ∈ Xi in the form Ui,x
RB =∑Ni

n=1 α
i,x
n Ui,n

h , where αi,x = (αi,x1 , . . . , αi,xNi )
T ∈ RNi is a vector of unknowns. Inserting this

representation into (20) and using the affine decomposition (23), (24) we arrive at a reduced
system

Ai,xαi,x = Gi,x, (26)

where the matrix Ai,x ∈ RNi×Ni and the right hand side Gi,x ∈ RNi are defined entry-wise
by

(Ai,x)nm =
∑QA

q,r=1
ΘA
q (x)ΘA

r (x)Aq(Ui,n
h , T r(Ui,m

h )),

(Gi,x)n =
∑QA

q=1

∑QG

r=1
ΘA
q (x)ΘG

r (x)Gir(T q(Ui,n
h )).

(27)

As the underlined quantities in (27) are precomputed in the offline phase, the assembling
of (27) and the solution of (26) have a time cost independent of dim(Xh). Indeed, the
assembling of (27) takes O(N2

i Q
2
A + NiQAQG) operations. The linear system (26) is dense

but of small size Ni, therefore, a direct solution takes O(N3
i ) operations. Using the definition

of aRB(x) in (22) and the affine decomposition (23) we get

aRB
ij (x) =

∑QG

q=1
ΘG
q (x)

(∑Nj

m=1
αj,xm Giq(Uj,m

h ) +
∑Ni

n=1
αi,xn Gjq(Ui,n

h )

)
−
∑QA

q=1

∑Ni

n=1

∑Nj

m=1
αi,xn αj,xm ΘA

q (x)Aq(Ui,n
h ,Ui,m

h ).

(28)

Again, by precomputing the underlined expressions in the offline phase, the evaluation of
aRB(x) is independent of dim(Xh).

Offline phase: Greedy construction of the RB space. We sketch here how the pa-
rameters Si = {xi,1, . . . , xi,Ni}, which then define the RB space Xi, are selected using a
greedy procedure. For details see [4, 5]. The main ingredient is the following a posteriori
error estimator. Given a RB space Xi, we can show that

‖Ui,x
h −Ui,x

RB‖X ≤ ∆E
i (x) :=

‖Ri(·;x)‖X′h
βlow(x)

,

where Ri(V;x) = Gi(V;x)−A(Ui,x
RB,V;x) and βlow(x) is some positive lower bound of the

inf-sup stability constant β(x) of A(·, ·;x). A great advantage of the a posteriori error estima-
tor ∆E

i (x) is that it can be evaluated cheaply for any x ∈ Ω thanks to an appropriate offline
precomputation. Indeed, we can define βlow(x) using the successive constraint method [17]
(see below) or some of its approximations mentioned in [5]. The residual term ‖Ri(·;x)‖X′h
enjoys a similar offline/online decomposition as the effective permeability aRB. We can now
define the greedy algorithm.

Algorithm: Greedy RB construction. Select a training set of parameters Ξtrain ⊂ Ω
and an RB tolerance εtol. For each i ∈ {1, . . . , d} we start with Si = ∅ and repeat:

1. Find x̂ ∈ Ξtrain for which the value ∆E
i (x̂) is the largest.

2. If ∆E
i (x̂) is lower εtol, we stop the algorithm. Else, we add x̂ to Si, update the space

Xi, compute all the offline coefficients necessary for evaluation of the a posteriori error
estimator, and continue with step 1.
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Successive constraint method. For any x ∈ Ω the inf-sup constant β(x) can be inter-
preted as

√
λmin, where λmin is a minimal eigenvalue of a generalized eigenvalue problem

of the type Az = λBz with A and B symmetric and positive definite. However, solving
this eigenproblem numerically for every x ∈ Ξtrain can be prohibitive. The successive con-
straint method [17] is a greedy offline-online algorithm that computes β(x) exactly for a
small number of parameters x ∈ S ⊂ Ω and then uses a rigorous bound β(x) ≥ βlow(x) :=
maxx∈S β(x)βLB(x;x), where the online computation of the term βLB(x;x) involves solving
a small linear programing problem.

3.4. The fully discrete multiscale method. By combining the SIP-DG-FEM dis-
cretization (10) from section 3.1 and the reduced basis approximation of the effective perme-
ability from section 3.2 we obtain the fully discrete multiscale method: Find pH,RB ∈ Sldis(TH)
such that

BRB
H (pH,RB, qH) = LRB

H (qH) ∀qH ∈ Sldis(TH), (29)

where

BRB
H (pH , qH) =

∫
Ω

ΠaRB(∇pH) · ∇qH dx−
∑
e∈Epen

∫
e

({ΠaRB(∇pH)} · [[qH ]]

+ {ΠaRB(∇qH)} · [[pH ]]− σ[[pH ]] · [[qH ]]) ds,

LRB
H (qH) =

∫
Ω

fqH dx+

∫
ΓD

(ΠaRB(∇qH) · n + σqH)gD ds+

∫
ΓN

gNq
H ds.

(30)

For simplicity, we assume that the boundary data gD and gN can be integrated exactly in (30).

4 Analysis of the method

In this section we study the stability and the convergence of the multiscale method (29).
Accuracy of the approximation of a0 by aRB is studied in section 4.1, well-posedness in
section 4.2, and a priori error estimates in section 4.3.

Spaces and norms. While the numerical multiscale method is defined on Sldis(TH), an
appropriate space for the analysis is

V (TH) = Sldis(TH) +H1
0 (Ω) ∩H2(Ω) (31)

accompanied with a mesh-dependent norm

|||v||| =
(
|||v|||20 +

∑
K∈TH

H2
K |v|22,K

)1/2

, (32)

where

|||v|||20 = ‖∇v‖2L2(Ω) + |v|2∗, |v|2m,K =
∑
|α|=m

‖∂αv‖2L2(K), |v|2∗ =
∑
e∈Epen

‖H−1/2
e [[v]]‖2L2(e).

Both ||| · ||| and ||| · |||0 are norms in V (TH) but they are not equivalent. However, using the
local inverse inequality it can be shown that they are equivalent when restricted to Sldis(TH).

Trace inverse inequality. For any K ∈ TH and vector function v ∈ P l−1(K)d we have

‖v‖L2(∂K) ≤ ClH
−1/2
K ‖v‖L2(K), (33)

where C depends only on d and shape-regularity of K. For a proof see [25].

4.1. Properties of the effective permeability. In [22], where periodic porous me-
dia are studied, it is shown that a0(x) is symmetric and coercive for any given x ∈ Ω. In
our analysis we will require a uniform coercivity and boundedness constant for non-periodic
medium. It is shown in [3] that under rather generic assumptions on the varying micro
geometries (Y xF , Y

x
S ) there exist Λ ≥ λ > 0 such that

a0(x)ξ · ξ ≥ λ|ξ|2, ‖a0(x)‖F ≤ Λ ∀x ∈ Ω, ∀ξ ∈ Rd. (34)

For any macroscopic mesh TH the tensors ah(x) and aRB(x) are considered (in the multiscale
methods) only on the quadrature points QH = {xKj : K ∈ TH , j ∈ {1, . . . , J}}. Assuming
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that the micro mesh size h is small enough, bounds of type (34) are shown for ah(x) in [3].
Assuming that εtol in the offline RB process is small enough and the training set Ξtrain is
dense enough in Ω, bounds of type (34) can be obtained for aRB(x) too (see [5]). Thus, for
the rest of the analysis we assume that

aRB(x)ξ · ξ ≥ λ|ξ|2, ‖aRB(x)‖F ≤ Λ ∀x ∈ QH , ∀ξ ∈ Rd. (35)

If we know QH while running the offline phase, we can ensure (35) by having QH ⊂ Ξtrain.

Permeability approximation error. We decompose the difference a0 − aRB into two
terms: a0 − ah and ah − aRB. It can be shown that (see [3])

‖a0(x)− ah(x)‖2F ≤
∑d

i=1
‖ui,x(·)− ui,x,h(φ(x, ·))‖2L2(YF).

Using standard a priori error estimates on the Stokes micro problems, we have ‖a0(x) −
ah(x)‖F ≤ Chk+2, if ui,x ∈ Hk+1(Y xF ) and the Taylor–Hood Pk+1/Pk finite elements are
used on the micro scale. Expressed in terms of microscopic degrees of freedom Nmic, this
error estimate reads

‖a0(x)− ah(x)‖F ≤ CN
−k−2
d

mic (36)

The required regularity of ui,x can be difficult to achieve, since the micro domains usually
contain re-entrant corners. Hence, as shown in [3], adaptive mesh refinement must be used
to obtain such convergence rates. The error caused by the reduced basis approximation can
be bounded by (see [5])

‖ah(x)− aRB(x)‖F ≤ C
∑d

i=1
inf
V ∈Xi

‖Ui,x
h − V ‖

2
X ∀x ∈ Ω. (37)

To estimate the projection error of the solutions Ui,x
h with respect to the low-dimensional

space Xi we rely on some properties of the solution manifoldsMi = {Ui,x
h ;x ∈ Ω}. For any

M⊂ Xh we define the Kolmogorov n-width

dn(M) = inf
Z∈Xh

dim(Z)=n

sup
U∈M

inf
V∈Z
‖V −U‖X .

If there are constants M,a, α > 0 such that dn(Mi) ≤Me−an
α

for every i ∈ {1, . . . , d}, then
we can show that

‖ah(x)− aRB(x)‖F ≤ CMe−cN
β
RB , (38)

where C, c > 0 and β = α/(α+ 1) and NRB = mini∈{1,...,d}Ni.

4.2. Stability. Stability of the multiscale method (29) is closely related to the penalty
weight σ : ∪e∈Epene→ R. For any e ∈ E we let σ be constant in e by defining σ|e ≡ αSe/He,
where He = diam(e), α > 0 is a large enough global constant (see Theorem 3), and

Se ≡ max
K∈TH
e⊂∂K

SK , SK = max
j∈{1,...,J}

‖aRB(xKj )‖F ∀K ∈ TH .

The explicit inclusion of Se allows us to find stability bounds for α that are independent
of the tensor scaling (see Remark 4). Notice also that we have Se ≤ SK ≤ Λ for every
K ∈ TH and e ∈ ∂K. We continue by two lemmas that consider an arbitrary tensor defined
on all quadrature points QH . These lemmas generalize results in [2] for higher order macro
polynomials.

Lemma 1. Consider a tensor a : QH → Rd×d such that ‖a(x)‖F ≤ Λ for every x ∈ QH . If
(Q) and (35) hold, then for every pH , qH ∈ Sldis(TH) and K ∈ TH we have∫

K

Πa(∇pH) · ∇qH dx ≤ Λ‖∇pH‖L2(K)‖∇qH‖L2(K), (39)

‖Πa(∇pH)‖L2(K) ≤ Λ‖∇pH‖L2(K). (40)

If the tensor satisfies a(x)ξ · ξ ≥ λ|ξ|2 > 0 for every x ∈ QH and ξ ∈ Rd, we have∫
K

Πa(∇pH) · ∇pH dx ≥ λ‖∇pH‖2L2(K). (41)
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Proof. By (Q) the integral on the left side of (39) can be evaluated exactly by the quadrature
formula since the integrand is a polynomial of degree 2(l − 1). This observation and the
Cauchy–Schwarz inequality give∫

K

Πa(∇pH) · ∇qH dx =
∑J

j=1
ωKja(xKj )∇pH(xKj ) · ∇qH(xKj )

≤ Λa
∑J

j=1
ωKj |pH(xKj )| · |qH(xKj )|

≤ Λa

(∑J

j=1
ωKj |pH(xKj )|2

)1/2(∑J

j=1
ωKj |qH(xKj )|2

)1/2

≤ Λa‖∇pH‖L2(K)‖∇qH‖L2(K).

Proof of the other two bounds (40) and (41) is analogous.

Lemma 2. Consider a tensor a : QH → Rd×d such that ‖a(x)‖F ≤ Λ for every x ∈ QH .
If (Q) holds then for any pH , qH ∈ Sldis(TH) we have∑

e∈Epen

∫
e

{Πa(∇pH)} · [[qH ]] ds ≤ CΛ‖∇pH‖L2(Ω)|qH |∗, (42)

where the constant C is depends only on l, d, and the shape-regularity of TH .

Proof. The Cauchy-Schwarz inequality gives∑
e∈Epen

∫
e

{Πa(∇pH)} · [[qH ]] ds ≤
( ∑
e∈Epen

He‖{Πa(∇pH)}‖2L2(e)︸ ︷︷ ︸
=:I

)1/2

|qH |∗.
(43)

For any e ∈ E we consider the neighboring elements K−e ,K+
e ∈ TH , where K−e = K+

e for the
boundary edges e ∈ ∂Ω. Using the triangle and Cauchy’s inequalities we get

‖{Πa(∇pH)}‖2L2(e) ≤
1

2

(
‖Πa(∇pH)|K−e ‖

2
L2(e) + ‖Πa(∇pH)|K+

e
‖2L2(e)

)
(44)

where C depends only on the shape-regularity of TH . Next we bound I by using first that
He ≤ CHK (shape regularity) and the inequality (44), then the trace inverse inequality (33)
and (40). We obtain

I ≤ C
∑
K∈TH

HK‖Πa(∇pH)|K‖2L2(∂K) ≤ C
∑
K∈TH

l2‖Πa(∇pH)‖2L2(K)

≤ C
∑
K∈TH

Λ2‖∇pH‖2L2(K) ≤ CΛ2‖∇pH‖2L2(Ω).
(45)

We conclude by using (45) in (43).

Theorem 3. Assume that (35) and (Q) hold. Then there is a threshold value αmin > 0 such
that for α > αmin the bilinear form BRB

H (·, ·) (see (30)) is uniformly elliptic and bounded on
Sldis(TH)× Sldis(TH) and the problem (29) has a unique solution pH,RB ∈ Sldis(TH).

Proof. We recall that the penalty parameter α appears in the penalty weight σ and we will
show that for α large enough the bilinear form BRB

H (·, ·) is coercive and bounded. The result
will then follow from the Lax–Milgram lemma.

Coercivity. For any pH ∈ Sldis(TH) we consider BRB
H (pH , pH) that we split as in (30) into

three terms. We then obtain a lower bound by using (41), Lemma 2 with a = aRB, and (35)

BRB
H (pH , pH) =

∫
Ω

ΠaRB(∇pH) · ∇pH dx− 2
∑
e∈Epen

∫
e

{ΠaRB(∇pH)} · [[pH ]] ds

+
∑
e∈Epen

∫
e

σ[[pH ]] · [[pH ]] ds

≥ λ‖∇pH‖2L2(Ω) − CΛ‖∇pH‖L2(Ω)|pH |∗ + αλ|pH |2∗.

(46)

12



Using the inequality 2xy ≤ α−1/2x2 + α1/2y2 on the mixed term and then assuming that
α > max{1, 4C2Λ2λ−2} we get

BRB
H (pH , pH) ≥ (λ− CΛα−1/2)‖∇pH‖2L2(Ω) + (αλ− CΛα1/2)|pH |2∗

≥ λ

2
(‖∇pH‖2L2(Ω) + |pH |2∗) =

λ

2
|||pH |||20 ≥ C|||pH |||,

where the last constant C depends only on λ, d, l, and the shape-regularity of TH .

Boundedness. For any pH , qH ∈ Sldis(TH) we can bound |BRB
H (pH , qH)| from above by

using (39) and Lemma 2 with a = aRB, using that SK , Se ≤ Λ and the Cauchy-Schwarz
inequality. We get

|BRB
H (pH , qH)| ≤ Λ‖pH‖L2(Ω)‖qH‖L2(Ω) + CΛ‖∇pH‖L2(Ω)|qH |∗ + CΛ‖∇qH‖L2(Ω)|pH |∗

+ α
∑
e∈Epen

Se‖H−1/2
e [[pH ]]‖L2(e)‖H−1/2

e [[qH ]]‖L2(e)

≤ C(‖pH‖L2(Ω) + |pH |∗)(‖∇qH‖L2(Ω) + |qH |∗)
≤ C|||pH |||0|||qH |||0 ≤ C|||pH ||||||qH |||

where C depends on Λ, α, d, l, and the shape-regularity of TH .

Remark 4. If the proof of coercivity in Theorem 3 is carried a bit differently and one follows
the constants, one can obtain a better condition on α, for example

α ≥ 4C2l2 max
K∈TH

S2
K/s

2
K , (47)

where the constant C depends only on d and shape-regularity of TH and sK > 0 is such that
aRB(xKj )ξ · ξ ≥ sK |ξ|2 is valid for every j ∈ {1, . . . , J}. In practice, setting α = 10l2 gives
good results.

4.3. A priori error estimates. We decompose the error into two parts (and estimate
them independently)

|||p0 − pH,RB||| ≤ ||| p0 − pH,0︸ ︷︷ ︸
emac

|||+ ||| pH,0 − pH,RB︸ ︷︷ ︸
emic,RB

||| (48)

Micro and RB error. The problems (10) and (29) differ only in the tensor values at the
quadrature points of TH . Therefore, following the proof of Theorem 3, we can equally prove
that the problem (10) is well-posed for α large enough. That is, there exists a unique solution
pH,0 ∈ Sldis(TH) for α large enough.

Lemma 5. We have

|||emic,RB||| ≤ C
(

max
x∈QH

‖aRB(x)− a0(x)‖F︸ ︷︷ ︸
Ca

)
(|||pH,RB|||+ ‖gD‖H1/2(ΓD)). (49)

Proof. Coercivity of B0
H(·, ·) gives

C|||emic,RB|||2 ≤ B0
H(emic,RB, emic,RB)

= B0
H(pH,0, emic,RB)−B0

H(pH,RB, emic,RB)

= BRB
H (pH,RB, emic,RB)−B0

H(pH,RB, emic,RB) + L0
H(emic,RB)− LRB

H (emic,RB).

That implies

|||emic,RB||| ≤ C sup
qH∈Sldis(TH)

BRB
H (pH,RB, qH)−B0

H(pH,RB, qH) + L0
H(qH)− LRB

H (qH)

|||qH |||
·

For any pH , qH ∈ Sldis(TH) we use (39) and Lemma (2) with a = aRB− a0 and then Cauchy-
Schwarz inequality to get

BRB
H (pH , qH)−B0

H(pH , qH) =

∫
Ω

Π(aRB−a0)(∇pH) · ∇qH dx

−
∑
e∈Epen

∫
e

({Π(aRB−a0)(∇pH)} · [[qH ]] + {Π(aRB−a0)(∇qH)} · [[pH ]]) ds

≤ CCa
(
‖∇pH‖L2(Ω)‖∇qH‖L2(Ω) + ‖∇pH‖L2(Ω)|qH |∗ + |pH |∗‖∇qH‖L2(Ω)

)
≤ CCa|||pH ||||||qH |||.

(50)
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Similarly, we have

L0
H(qH)− LRB

H (qH) =
∑
e∈ED

∫
e

Π(a0−aRB)(∇qH) · ngD ds

≤ ‖Π(a0−aRB)(∇qH)‖H−1/2(ΓD)‖gD‖H1/2(ΓD)

≤ C‖Π(a0−aRB)(∇qH)‖L2(Ω)‖gD‖H1/2(ΓD)

≤ CCa|||qH |||‖gD‖H1/2(ΓD).

(51)

Combining the last three inequalities we get the desired result.

Macro error. We now consider the macro error emac = p0 − pH,0, which can be seen as
the error of a single-scale DG method with numerical quadrature. It is standard in the DG
literature to assume an additional condition on a0 that we have not introduced yet, since we
were able to carry the results in general.

Lemma 6. If a0(x) is constant in each element K ∈ TH and p0 ∈ H l+1(Ω), then

|||p0 − pH,0||| ≤ CH l, ‖p0 − pH,0‖L2(Ω) ≤ CH l+1, (52)

where the constant C is independent of H.

Proof. This is a standard result, see [11].

Theorem 7. If a0(x) is constant in each element K ∈ TH and p0 ∈ H l+1(Ω), then

|||p0 − pH,RB||| ≤ C(H l + max
x∈QH

‖aRB(x)− a0(x)‖F) (53)

Proof. It follows from the error decomposition (48) and from Lemma 6 and Lemma 5.

We remind that under suitable assumptions on the regularity of micro problems and on
the Kolmogorov n-width of the solution manifold we had the micro and RB estimates (36)
and (38), respectively. Writing everything in the terms of degrees of freedom we obtain an
error estimate

|||p0 − pH,RB||| ≤ C(N
− l
d

mac +N
−k−2
d

mic + e−cN
β
RB). (54)

5 Numerical experiments

In this section we validate the proposed DG multiscale method, study convergence rates and
conservative properties. We illustrate the efficiency of the method on 2D and 3D problems.

Implementation. All experiments were performed on a single computer with two 8-core
processors Intel Xeon E5-2600 and 64 GB of RAM with Matlab R2014a. The finite element
code is inspired by [8, 15] and it uses vectorization techniques to achieve fast assembling.
Sparse linear systems are solved by the Matlab routine mldivide for two-dimensional prob-
lems. For three-dimensional problems we apply two different techniques.

• Positive definite systems are solved by the algebraic multigrid solver AGMG [18].

• Stokes systems are solved by the Uzawa method [19]. In the Uzawa method, AGMG
was used as a preconditioner for the coercive part and the diagonal of the pressure mass
matrix was used as a preconditioner of the Shur’s complement.

Linear systems with the same positive definite matrix representing the scalar product on Xh

are solved repeatedly in the offline algorithms. We optimize this by precomputing a sparse
Cholesky factorization (Matlab routine chol). Generalized eigenproblems from the SCM
method were solved using the Matlab package bleigifp [21], which implements a block,
inverse-free Krylov subspace method. Linear programming problems from the SCM method
are solved by the Matlab routine linprog with the default settings.
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5.1. A 2D problem. Let Ω = (−3, 3)×(−2, 2) and define the local porous geometries
(Y xF , Y

x
S ) by (see Figure 3)

Y xF =
{
y ∈ Y : |y1| < a or |y2| < c or

(|y1| − a)2

(b− a)2
+

(|y2| − c)2

(d− c)2
< 1
}
,

where a, b, c, d are functions depending on x (see (55)). We define the reference porous
geometry YF by setting a = b = 1/6 and c = d = 1/3. Figure 3 displays how can we
divide YF by four horizontal and four vertical lines and how can we obtain Y xF by simply
moving these lines so that the geometry is stretched or contracted in the directions y1 and
y2. That is, we can divide YF into 13 regions such that an implicitly defined ϕ(x, ·) will be
affine in each region. To avoid degenerate cases we set the mapping x 7→ (a, b, c, d) so that
0 < a(x) < b(x) < 1/2 and 0 < c(x) < d(x) < 1/2. Let

a(x) = 0.15e(x) + 0.05, c(x) = 0.15f(x) + 0.05, (55)
b(x) = d(x) = 0.15(e(x) + f(x)) + 0.1,

where e(x) = sin(πx1/6 + x2)2 and f(x) = cos(πx1/6 − x2)2. We plot some of the extreme
deformations of the reference geometry in Figure 4. Notice that the permeability of thick
and thin channels differs by two orders of magnitude.
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Figure 3: Micro geometries and the mapping ϕ(x, ·) for the 2D example.

x = (3/2, π/4)(
0.011 0

0 0.011

) x = (3/2,−π/4)(
0.000095 0

0 0.000095

) x = (0, 0)(
0.0065 0

0 0.00014

) x = (0, π/2)(
0.00014 0

0 0.0065

)

Figure 4: Examples of the local porous geometries (Y xF , Y
x
S ) that show extremal deformations.

The matrices below are approximate values of a0(x).

To give more intuition on how the porous geometry varies, we plot Ωε in Figure 5. However,
we do not follow the definition (3) as it would create artificial corners at the boundaries of
neighboring tiles, since the channel widths would not match exactly. Instead, we define the
porous geometry by (see also [3] for details) Ωε = Ω\ ∪k∈Zd {ε(k + ϕ(εk + εy, y)) | y ∈ YS}.
At the macro scale (see (6)) we set the force field f ≡ 0. For the boundary conditions,

we set gD(x) = 0 for x ∈ ΓD = (−3, 3) × {−2} and ΓN(x) = 1 for x ∈ ΓN = (−3, 3) × {2}.
The remaining two edges {−3} × (−2, 2) and {3} × (−2, 2) are assumed to be connected
periodically. We choose such boundary conditions to provide high regularity of p0 so that
we can test higher order finite elements with uniform macro meshes. A sketch of the exact
solution p0 and the related velocity field is plotted in Figure 6.

Macroscopic meshes. In all experiments we consider uniform macroscopic meshes. The
coarsest macro has 24 elements and we consider 6 additional meshes, where each new mesh
is a uniform refinement of the previous one. See Figure 7.
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Figure 5: A sketch of Ωε for ε = 1/4.

0

2000

4000

1

2

3

Figure 6: Solution p0 with contours (left), magnitude of the velocity field |a0(x)∇p0| with
streamlines (right).

Figure 7: First three (out of 7) uniform macro meshes TH considered in the experiments.

Uniform micro meshes. For testing purposes we considered different micro meshes. The
coarsest micro mesh is depicted in Figure 8(left) and is denoted T 0

h . It contains 2 216 elements
and the corresponding degrees of freedom for the micro problems are Nmic = 10 150. We
define a sequence of meshes T 0

h , T 1
h , T 2

h , . . ., where each new mesh is a uniform refinement of
the previous one.

Adaptive micro meshes. Since YF contains re-entrant corners, micro solutions can ben-
efit from meshes that are adapted to the geometry. We applied the adaptive micro mesh
refinement from [5]. Starting with the coarsest uniform mesh T 0

h we considered the extreme
geometries (see Figure 4). We repeatedly map the current micro mesh to the extreme geome-
tries, solve the micro problems, compute the residuals for every element and mark and refine
the micro mesh according to the maximum residual over all four geometries. During this adap-
tive process we stopped the refinement when we reach successively 20 000, 40 000, 80 000, . . .
degrees of freedom and we denoted by T ad,1

h , T ad,2
h , T ad,3

h , . . . the obtained micro meshes.

Figure 8: The coarsest uniform micro mesh T 0
h (left) and the first adaptive micro mesh T ad,1

h

with a zoomed in interesting part (right).
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RB offline. For all different micro meshes we used the same settings in the RB offline
procedure. For discretization we used the stable Taylor-Hood elements P2/P1, that is, l = 1.
We ran the reduced basis over the parametric space x ∈ Ω, which was sampled randomly by
Ξtrain of size 10 000. Setting the tolerance to εtol = 10−5 we obtained the RB space with
N1, N2 ≈ 55 basis functions in all the cases.

Micro error. We first tested the influence of the micro mesh on the overall error. To
minimize the RB error we took the complete reduced basis N1, N2 ≈ 50. An experiment
with P1 macro elements is shown in Figure 9, where the saturation of the micro error is
visible for all the uniform meshes T 0

h , . . . , T 4
h . As expected, with finer micro meshes the error

is saturated at a lower value. It is remarkable that with the coarsest adaptive micro mesh we
get a smaller micro error than with the finest uniform micro mesh that we considered. We
emphasize that the online computation time is independent of the degrees of freedom of the
micro mesh.
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Adaptive micro mesh
T ad,1

h , Nmic = 21 462

Figure 9: Convergence rates of pH,RB with P1 macro FE and uniform macro refinement with
different micro meshes. The RB is set to maximum: N1, N2 ≈ 50.

We repeated the same experiment but this time with P2 and P3 macro elements and only
the adaptive micro meshes T ad,1

h , . . . , T ad,5
h . The convergence rates are shown in Figure 10.
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Figure 10: Convergence rates of pH,RB with P2 (left) and P3 (right) macro FE and uniform
macro refinement with different micro meshes. The RB is set to maximum: N1, N2 ≈ 50.

RB error. We have seen that we can expect the best results with the finest adapted micro
mesh T ad,5

h . Hence, we choose this micro mesh and run the multiscale method with uniform
refinement on the macro scale and varying number of RB functions NRB = N1 = N2. We
monitor the relative macroscopic error in the pressure. For P1 macro elements, the resulting
convergence rates are plotted in Figure 11. We see that already taking NRB = 7 is sufficient
for the finest macro mesh.
We next choose P3 macro elements and repeat the experiment. From Figure 12 we see

that for NRB = 25 the error is saturated even for the finest macro mesh and the micro error
becomes dominant.

Conservation of mass. One of the desirable properties of a DG method is conservation of
mass, especially in time-dependent problems. For every interior edge e ∈ Eint the numerical
flux is defined as σ̂K = {ΠaRB(∇pH,RB)} − σ[[pH,RB]]. These fluxes are conservative, that is,
for element K ∈ TH with no boundary edges we have the conservation property

∫
∂K

σ̂K ds =
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Figure 11: Convergence rates of pH,RB with P1 macro FE, micro mesh T ad,5
h , and a varying

number of RB functions NRB = N1 = N2.
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Figure 12: Left: Convergence rates of pH,RB with P1 macro FE, micro mesh T ad,5
h , and a

varying number of RB functions NRB = N1 = N2. Right: Convergence of the maximal
residual in the offline greedy algorithm for the reduced basis.

∫
K
f dx. The flux over boundary edges is treated differently. To express the conservation of

mass for any element, we take any K ∈ TH and e ∈ ∂K and define

FKe =


∫
e
({ΠaRB(∇pH,RB)} − σe[[pH,RB]])nds if e ∈ Eint,∫
e
({ΠaRB(∇pH,RB)} − σe[[pH,RB − gD]])nds if e ∈ ED,∫
e
gN ds if e ∈ EN.

It is then guaranteed that ∑
e∈∂K

FKe =

∫
K

f dx ∀K ∈ TH . (56)

We examined the conservation property (56) numerically by computing the left hand side
value of (56) for every element in Figure 13(top). Since f ≡ 0 in our experiment, we
expect these values to be very close to zero, which seems to hold (up to round-off errors).
Evaluation of the same quantity for a multiscale method with continuous macro elements (the
RB-DS-FE-HMM from [5]) results in values whose absolute value are significantly larger, see
Figure 13(bottom). Compared to continuous FE, where reconstruction techniques are used
to postprocess the solution to be conservative, with a SIP-DG method such properties are
valid without any additional procedure.

5.2. A 3D problem. We now consider a three-dimensional example. The macro-
scopic domain will be a filtration bottle given by Ω = {x ∈ R3 : x1 ∈ (−1, 1), x2

2 + x2
3 ≤

g(x1)2}, where g(r) = 0.2 for r < −1/2, g(r) = 0.6 for r > 1/2, and g(r) = 0.2 sin(πr) + 0.4
otherwise (see Figure 14).
The microscopic domains Y xF are defined as unions of three ellipsoidal cylinders. See

Figure 15 for a sketch of the following definition. We define

Y xF =
{
y ∈ Y : min

{ y2
1

µ2
1

+
y2

2

µ2
2

,
y2

1

µ2
1

+
y2

3

µ2
3

,
y2

2

µ2
2

+
y2

3

µ2
3

}
< 0.82

}
, (57)
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Figure 13: Comparison of conservations of the proposed numerical method (top) and the
RB-DS-FE-HMM (see [5]) that uses continuous FE on the macro scale (bottom). Plotted are
the values of the left hand sides of (56) that were computed for two different macro meshes
(left vs. right), P1 macro elements, micro mesh T ad,5

h , and N1 = N2 = 7.

x1x2

x3

Figure 14: Macroscopic domain Ω and mesh TH (left). Boundary conditions (right): Neu-
mann inflow (blue), zero Dirichlet (red), zero Neumann (transparent green).

where the functions µ1, µ2, µ3 depend on x (see (58)). The reference micro domain corre-
sponds to µ1 = µ2 = µ3 = 1/4. Figure 15 illustrates how we can cut YF with 6 planes such
that Y xF can be obtained stretching or contracting the planes in each direction. That is,
we can divide YF into 7 regions such that an implicitly defined ϕ(x, ·) will be affine in each
region. To avoid degenerate cases we will allow only 0 < µ1, µ2, µ3 < 1/2. We set

µ1(x) = 1/4 + sin(x1 + 2x2 + 3x3)/8,

µ2(x) = 1/4 + sin(−2x1 + x2 − 3x3)/8,

µ3(x) = 1/4 + sin(3x1 − x2 + x3)/8.

(58)

In the reduced basis offline algorithm we used tolerance εtol = 0.0005 and the training set
was random selection of points from Ω with |Ξtrain| = 653. The resulting sizes of RB were
N1 = 59, N2 = 61, and N3 = 58. In Figure 16 we sketched a plot of some pressure isosurfaces
for the pressure solution computed with the multiscale numerical method.

Conclusion

We have presented a multiscale FE method for Stokes flow in porous media. The method
uses a discontinuous Galerkin discretization of the effective Darcy problem at the macroscopic
scale. The effective permeability is recovered at every quadrature point of the macroscopic
using local porous geometry. We applied the reduced basis method for a fast and accurate
approximation of the permeability, allowing for a fast (mesh independent) computation of
the permeability in an online stage. We discussed a priori error analysis and provided a priori
convergence rates for the proposed multiscale method. Various sources of discretisation error
have also been studied numerically and the performance and accuracy of the method has
also been illustrated. The method allows for further generalizations. In particular, tools
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Figure 15: Reference micro domain YF and mesh Th (upper left corner) and some local
geometries Y xF .

Figure 16: A plot of some pressure isosurfaces of pH,RB. The isosurface of zero value (right-
most) is scattered since the Dirichlet boundary conditions are enforced weakly.

developed for single scale DG-FEM such as adaptive mesh refinement or hp-adaptivity, can
be applied on the macro scale without changing the micro solver.
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