77,362 research outputs found

    Entity matching with transformer architectures - a step forward in data integration

    Get PDF
    Transformer architectures have proven to be very effective and provide state-of-the-art results in many natural language tasks. The attention-based architecture in combination with pre-training on large amounts of text lead to the recent breakthrough and a variety of slightly different implementations. In this paper we analyze how well four of the most recent attention-based transformer architectures (BERT, XLNet, RoBERTa and DistilBERT) perform on the task of entity matching - a crucial part of data integration. Entity matching (EM) is the task of finding data instances that refer to the same real-world entity. It is a challenging task if the data instances consist of long textual data or if the data instances are "dirty" due to misplaced values. To evaluate the capability of transformer architectures and transfer-learning on the task of EM, we empirically compare the four approaches on inherently difficult data sets. We show that transformer architectures outperform classical deep learning methods in EM by an average margin of 27.5%

    A Scalable and Extensible Framework for Superposition-Structured Models

    Full text link
    In many learning tasks, structural models usually lead to better interpretability and higher generalization performance. In recent years, however, the simple structural models such as lasso are frequently proved to be insufficient. Accordingly, there has been a lot of work on "superposition-structured" models where multiple structural constraints are imposed. To efficiently solve these "superposition-structured" statistical models, we develop a framework based on a proximal Newton-type method. Employing the smoothed conic dual approach with the LBFGS updating formula, we propose a scalable and extensible proximal quasi-Newton (SEP-QN) framework. Empirical analysis on various datasets shows that our framework is potentially powerful, and achieves super-linear convergence rate for optimizing some popular "superposition-structured" statistical models such as the fused sparse group lasso

    Bridging Between Computer and Robot Vision Through Data Augmentation: A Case Study on Object Recognition

    Get PDF
    Despite the impressive progress brought by deep network in visual object recognition, robot vision is still far from being a solved problem. The most successful convolutional architectures are developed starting from ImageNet, a large scale collection of images of object categories downloaded from the Web. This kind of images is very different from the situated and embodied visual experience of robots deployed in unconstrained settings. To reduce the gap between these two visual experiences, this paper proposes a simple yet effective data augmentation layer that zooms on the object of interest and simulates the object detection outcome of a robot vision system. The layer, that can be used with any convolutional deep architecture, brings to an increase in object recognition performance of up to 7{\%}, in experiments performed over three different benchmark databases. An implementation of our robot data augmentation layer has been made publicly available
    • …
    corecore