5 research outputs found

    A Survey of League Championship Algorithm: Prospects and Challenges

    Full text link
    The League Championship Algorithm (LCA) is sport-inspired optimization algorithm that was introduced by Ali Husseinzadeh Kashan in the year 2009. It has since drawn enormous interest among the researchers because of its potential efficiency in solving many optimization problems and real-world applications. The LCA has also shown great potentials in solving non-deterministic polynomial time (NP-complete) problems. This survey presents a brief synopsis of the LCA literatures in peer-reviewed journals, conferences and book chapters. These research articles are then categorized according to indexing in the major academic databases (Web of Science, Scopus, IEEE Xplore and the Google Scholar). The analysis was also done to explore the prospects and the challenges of the algorithm and its acceptability among researchers. This systematic categorization can be used as a basis for future studies.Comment: 10 pages, 2 figures, 2 tables, Indian Journal of Science and Technology, 201

    Optimization Methods in Modern Transportation Systems

    Get PDF
    One of the greatest challenges in the public transportation network is the optimization of the passengers waiting time, where it is necessary to find a compromise between the satisfaction of the passengers and the requirements of the transport companies. This paper presents a detailed review of the available literature dealing with the problem of passenger transport in order to optimize the passenger waiting time at the station and to meet the requirements of companies (maximize profits or minimize cost). After a detailed discussion, the paper clarifies the most important objectives in solving a timetabling problem: the requirements and satisfaction of passengers, passenger waiting time and capacity of vehicles. At the end, the appropriate algorithms for solving the set of optimization models are presented

    Multi-population-based differential evolution algorithm for optimization problems

    Get PDF
    A differential evolution (DE) algorithm is an evolutionary algorithm for optimization problems over a continuous domain. To solve high dimensional global optimization problems, this work investigates the performance of differential evolution algorithms under a multi-population strategy. The original DE algorithm generates an initial set of suitable solutions. The multi-population strategy divides the set into several subsets. These subsets evolve independently and connect with each other according to the DE algorithm. This helps in preserving the diversity of the initial set. Furthermore, a comparison of combination of different mutation techniques on several optimization algorithms is studied to verify their performance. Finally, the computational results on the arbitrarily generated experiments, reveal some interesting relationship between the number of subpopulations and performance of the DE. Centralized charging of electric vehicles (EVs) based on battery swapping is a promising strategy for their large-scale utilization in power systems. In this problem, the above algorithm is designed to minimize total charging cost, as well as to reduce power loss and voltage deviation of power networks. The resulting algorithm and several others are executed on an IEEE 30-bus test system, and the results suggest that the proposed algorithm is one of effective and promising methods for optimal EV centralized charging

    A differential evolution algorithm with dual populations for solving periodic railway timetable scheduling problem

    No full text
    Railway timetable scheduling is a fundamental operational problem in the railway industry and has significant influence on the quality of service provided by the transport system. This paper explores the periodic railway timetable scheduling (PRTS) problem, with the objective to minimize the average waiting time of the transfer passengers. Unlike traditional PRTS models that only involve service lines with fixed cycles, this paper presents a more flexible model by allowing the cycle of service lines and the number of transfer passengers to vary with the time period. An enhanced differential evolution (DE) algorithm with dual populations, termed “dual-population DE” (DP-DE), was developed to solve the PRTS problem, yielding high-quality solutions. In the DP-DE, two populations cooperate during the evolution; the first focuses on global search by adopting parameter settings and operators that help maintain population diversity, while the second one focuses on speeding up convergence by adopting parameter settings and operators that are good for local fine tuning. A novel bidirectional migration operator is proposed to share the search experience between the two populations. The proposed DP-DE has been applied to optimize the timetable of the Guangzhou Metro system in Mainland China and six artificial periodic railway systems. Two conventional deterministic algorithms and seven highly regarded evolutionary algorithms are used for comparison. The comparison results reveal that the performance of DP-PE is very promising
    corecore