3 research outputs found

    Boundary classes for graph problems involving non-local properties

    Get PDF
    We continue the study of boundary classes for NP-hard problems and focus on seven NP-hard graph problems involving non-local properties: HAMILTONIAN CYCLE, HAMILTONIAN CYCLE THROUGH SPECIFIED EDGE, HAMILTONIAN PATH, FEEDBACK VERTEX SET, CONNECTED VERTEX COVER, CONNECTED DOMINATING SET and GRAPH VCCON DIMENSION. Our main result is the determination of the first boundary class for FEEDBACK VERTEX SET. We also determine boundary classes for HAMILTONIAN CYCLE THROUGH SPECIFIED EDGE and HAMILTONIAN PATH and give some insights on the structure of some boundary classes for the remaining problems

    A Dichotomy for Upper Domination in Monogenic Classes

    No full text
    International audienceAn upper dominating set in a graph is a minimal (with respect to set inclusion) dominating set of maximum cardinality. The problem of finding an upper dominating set is NP-hard for general graphs and in many restricted graph families. In the present paper, we study the computational complexity of this problem in monogenic classes of graphs (i.e. classes defined by a single forbidden induced subgraph) and show that the problem admits a dichotomy in this family. In particular, we prove that if the only forbidden induced subgraph is a P4 or a 2K2 (or any induced subgraph of these graphs), then the problem can be solved in polynomial time. Otherwise, it is NP-hard
    corecore